508 research outputs found

    Magnetic-Field-Induced Antiferromagnetism in Two-Dimensional Hubbard Model: Analysis of CeRhIn5_5

    Get PDF
    We propose the mechanism for the magnetic-field-induced antiferromagnetic (AFM) state in a two-dimensional Hubbard model in the vicinity of the AFM quantum critical point (QCP), using the fluctuation-exchange (FLEX) approximation by taking the Zeeman energy due to the magnetic field BB into account. In the vicinity of the QCP, we find that the AFM correlation perpendicular to BB is enhanced, whereas that parallel to BB is reduced. This fact means that the finite magnetic field increases TNT_N, with the AFM order perpendicular to BB. The increment in TNT_N can be understood in terms of the reduction of both quantum and thermal fluctuations due to the magnetic field, which is caused by the self-energy effect within the FLEX approximation. The present study naturally explains the increment in TNT_N in CeRhIn_5 under the magnetic field found recently.Comment: 5 page

    Different mechanism of two-proton emission from proton-rich nuclei 23^{23}Al and 22^{22}Mg

    Get PDF
    Two-proton relative momentum (qppq_{pp}) and opening angle (θpp\theta_{pp}) distributions from the three-body decay of two excited proton-rich nuclei, namely 23^{23}Al \rightarrow p + p + 21^{21}Na and 22^{22}Mg \rightarrow p + p + 20^{20}Ne, have been measured with the projectile fragment separator (RIPS) at the RIKEN RI Beam Factory. An evident peak at qpp20q_{pp}\sim20 MeV/c as well as a peak in θpp\theta_{pp} around 30^\circ are seen in the two-proton break-up channel from a highly-excited 22^{22}Mg. In contrast, such peaks are absent for the 23^{23}Al case. It is concluded that the two-proton emission mechanism of excited 22^{22}Mg is quite different from the 23^{23}Al case, with the former having a favorable diproton emission component at a highly excited state and the latter dominated by the sequential decay process

    F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds

    Full text link
    The Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X contains information about the abelian sector of the six-dimensional theory obtained by compactifying F-theory on X. After examining features of the abelian anomaly coefficient matrix and U(1) charge quantization conditions of general F-theory vacua, we study Calabi-Yau threefolds with Mordell-Weil rank-one as a first step towards understanding the features of the Mordell-Weil group of threefolds in more detail. In particular, we generate an interesting class of F-theory models with U(1) gauge symmetry that have matter with both charges 1 and 2. The anomaly equations --- which relate the Neron-Tate height of a section to intersection numbers between the section and fibral rational curves of the manifold --- serve as an important tool in our analysis.Comment: 29 pages + appendices, 5 figures; v2: minor correction

    Monte Carlo simulations of an impurity band model for III-V diluted magnetic semiconductors

    Full text link
    We report the results of a Monte Carlo study of a model of (III,Mn)V diluted magnetic semiconductors which uses an impurity band description of carriers coupled to localized Mn spins and is applicable for carrier densities below and around the metal-insulator transition. In agreement with mean field studies, we find a transition to a ferromagnetic phase at low temperatures. We compare our results for the magnetic properties with the mean field approximation, as well as with experiments, and find favorable qualitative agreement with the latter. The local Mn magnetization below the Curie temperature is found to be spatially inhomogeneous, and strongly correlated with the local carrier charge density at the Mn sites. The model contains fermions and classical spins and hence we introduce a perturbative Monte Carlo scheme to increase the speed of our simulations.Comment: 17 pages, 24 figures, 2 table

    PReS-FINAL-2125: A Japanese girl with childhood-onset anti-Ku antibody positive generalized morphea-myositis overlap syndrome

    Get PDF
    POSTER PRESENTATIONProceedings of 20th Pediatric Rheumatology European Society (PReS) Congress / 25-29 September 2013 / Ljubljana, Sloveni

    Hindered proton collectivity in 28S: Possible magic number at Z=16

    Full text link
    The reduced transition probability B(E2;0 ->2+) for 28S was obtained experimentally using Coulomb excitation at 53 MeV/nucleon. The resultant B(E2) value 181(31) e2fm4 is smaller than the expectation based on empirical B(E2) systematics. The double ratio |M_n/M_p|/(N/Z) of the 0+ ->2+ transition in 28S was determined to be 1.9(2) by evaluating the M_n value from the known B(E2) value of the mirror nucleus 28Mg, showing the hindrance of proton collectivity relative to that of neutrons. These results indicate the emergence of the magic number Z=16 in the |T_z|=2 nucleus 28S.Comment: 10 pages, 3 figures. Published in Phys. Rev. Lett (http://link.aps.org/doi/10.1103/PhysRevLett.108.222501

    Quantum states and linear response in dc and electromagnetic fields for charge current and spin polarization of electrons at Bi/Si interface with giant spin-orbit coupling

    Full text link
    An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons and Grioni [Phys. Rev. B {\bf 82}, 085440 (2010)] describing quantum states at Bi/Si(111) interface with giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis for charge current and induced spin caused by dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response both for current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.Comment: 10 pages, 9 figure

    F-theory on Genus-One Fibrations

    Get PDF
    We argue that M-theory compactified on an arbitrary genus-one fibration, that is, an elliptic fibration which need not have a section, always has an F-theory limit when the area of the genus-one fiber approaches zero. Such genus-one fibrations can be easily constructed as toric hypersurfaces, and various SU(5)×U(1)nSU(5)\times U(1)^n and E6E_6 models are presented as examples. To each genus-one fibration one can associate a τ\tau-function on the base as well as an SL(2,Z)SL(2,\mathbb{Z}) representation which together define the IIB axio-dilaton and 7-brane content of the theory. The set of genus-one fibrations with the same τ\tau-function and SL(2,Z)SL(2,\mathbb{Z}) representation, known as the Tate-Shafarevich group, supplies an important degree of freedom in the corresponding F-theory model which has not been studied carefully until now. Six-dimensional anomaly cancellation as well as Witten's zero-mode count on wrapped branes both imply corrections to the usual F-theory dictionary for some of these models. In particular, neutral hypermultiplets which are localized at codimension-two fibers can arise. (All previous known examples of localized hypermultiplets were charged under the gauge group of the theory.) Finally, in the absence of a section some novel monodromies of Kodaira fibers are allowed which lead to new breaking patterns of non-Abelian gauge groups.Comment: 53 pages, 9 figures, 6 tables. v2: references adde
    corecore