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A novel recurrent EP300–ZNF384 gene fusion in B-cell
precursor acute lymphoblastic leukemia
Leukemia (2015) 29, 2445–2448; doi:10.1038/leu.2015.111

In pediatric patients with B-cell precursor acute lymphoblastic
leukemia (BCP-ALL), approximately three-quarters harbor well-
characterized, clinically relevant chromosomal alterations, includ-
ing hyperdiploidy, hypodiploidy, t(12;21) ETV6/RUNX1, t(1;19) E2A/
PBX1, t(9;22) BCR/ABL1 and the rearrangement of MLL at 11q23,
and they can facilitate diagnosis, risk stratification and targeted
therapy.1,2 In the remaining patients, however, major pathogenic
or driver gene abnormalities and their association with the clinical
outcome have yet to be fully clarified. As recent advanced
genomic studies using next-generation sequencing have identi-
fied a number of novel fusion genes and stratified a high-risk
subtype in BCP-ALL,3–5 unknown genetic alterations that consti-
tute characteristic subgroups may still exist in the remaining
patients. We therefore intended to investigate unknown fusion
genes in BCP-ALL by using next-generation sequencing.

As a consequence of whole transcriptome sequencing per-
formed on complementary DNA from 55 selected samples of
pediatric BCP-ALL patients without conventional genetic abnorm-
alities (Supplementary Information), an EP300–ZNF384 fusion gene
was identified in two patients (Cases 1 and 2) as a repeatable and
plausible candidate fusion gene (Figure 1a). The 372-bp fragment
of the EP300–ZNF384 fusion cDNA was amplified by RT-PCR using
a pair of specific primers, and Sanger sequencing of the PCR
products revealed a sequence of the products identical to that
obtained by whole transcriptome sequencing (Supplementary
Figure 1). The presence of EP300–ZNF384 fusion in Case 1 was
further confirmed by FISH using a combination of appropriate
probes for EP300 and ZNF384, respectively (Figure 1b). We
screened a further 346 of pediatric ALL cases by RT-PCR, and
identified 4 additional patients with EP300–ZNF384 fusion (Cases
3–6, Supplementary Figure 1). All six patients were BCP-ALL
without conventional cytogenetic abnormalities. Our RNA samples
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used in this study were obtained from the patients consisted of an
uncontinuous series of 68 BCP-ALL without conventional cytoge-
netic abnormalities and a continuous series of 333 ALL patients,
including 291 BCP-ALL patients (133 patients without conven-
tional cytogenetic abnormalities, Supplementary Information). As
three out of six cases of EP300–ZNF384+ BCP-ALL (Cases 2–4)
belong to later group, the frequency of EP300–ZNF384 expression
in BCP-ALL was estimated as 1.03% (0.90% in total ALL, 2.26% in

BCP-ALL without conventional cytogenetic abnormalities) in our
cohort.
EP300 encodes the E1A-binding protein p300 (EP300), a

transcriptional co-activator closely related to CREB-binding protein
(CBP) and with the ability to interact with a wide spectrum of
transcription factors and histone acetyltransferase activity.6 On the
other hand, the zinc-finger protein 384 (ZNF384) gene encodes a
transcription factor that regulates promoters of the extracellular
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Figure 1. Detection of the EP300–ZNF384 fusion gene. (a) Two split sequences of EP300–ZNF384 obtained from two individual patients by
whole transcriptome sequencing were aligned. Complementary DNA showing fusion of the intron following EP300 exon 6 and the intron
preceding the first coding exon (exon 3) of ZNF384. Amino-acid sequences of the predicted EP300–ZNF384 fusion protein are presented.
Arrows indicate the fusion points. The box indicates the initiation codon of ZNF384. #, inserted amino acids originating from the 5′
untranslated 5-bp sequence of ZNF384. The predicted EP300–ZNF384 protein is schematically indicated. NRID, nuclear receptor interaction
domain; TAZ1, transcriptional adaptor zinc-finger domain 1 (also known as the cysteine-histidine-rich (CH) region (CH1)); KIX, kinase-inducible
domain of CREB-interacting domain; Bd, bromodomain; RING, 'really interesting new gene' domain; PHD, plant homeodomain; HAT, histone
acetyltransferase domain; ZZ, ZZ-type zinc-finger domain; TAZ2, transcriptional-adaptor zinc-finger domain 2 (the RING-PHD segment is also
known as the CH2 region, and the ZZ-TAZ2 domain as the CH3 region); IBiD, IRF3-binding domain; LZ, leucine-rich domain; SR, serine-rich
domain; PR, proline-rich domain; NLS, nuclear localization signal; ZFs, Kruppel-type C2H2 zinc-finger domains; QA, Gln-Ala repeat. (b) The
results of FISH using the EP300 probe (green) and ZNF384 probe (red) are indicated. The fusion signals are indicated by yellow arrowheads.
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matrix genes.7 Chromosomal translocations involving EP300 fused
to either Monocytic leukemia zinc-finger protein (MOZ) or Mixed
lineage leukemia (MLL) genes are associated with acute myeloid
leukemia.8,9 ZNF384 is known to be involved in ALL through fusion
with the TET family gene, such as the Ewing sarcoma breakpoint
region 1 (EWSR1) gene, TATA box binding protein-associated factor
(TAF15) and transcription factor 3 (TCF3 or E2A).10,11 Although the
mutations of both EP300 and ZNF384 are known to be involved in
the development of leukemia, this is the first report on the EP300–
ZNF384 fusion gene.
The resulting sequence of the EP300–ZNF384 fusion gene

(Figure 1a) revealed that exon 6 of EP300 was fused to exon 3 (the
first coding exon) of ZNF384. The fusion point of ZNF384 is the
same as those of previously reported ZNF384-related fusion genes
between TAF15 and E2A genes.10,11 The 5-bp sequence upstream
of the initiation codon in ZNF384 is included, while the EP300–
ZNF384 fusion transcripts were predicted to encode a fusion
protein with in-frame joining between the N-terminal portion of
EP300 and the entire ZNF384 protein. A schematic representation
of the EP300–ZNF384 fusion protein predicted to encode a 110-
kDa protein with 1027 amino acids10,12 is shown in Figure 1a. The
EP300–ZNF384 fusion protein retains the transcriptional adapter
zinc-finger 1 (TAZ1) domain in the cysteine-histidine-rich region 1
(CH1) of EP300, but it lacks the other domains such as the histone
acetyltransferase (HAT) domain to be included in EP300. On the
other hand, the complete ZNF384 protein is retained in the
EP300–ZNF384 fusion.
The clinical findings of EP300–ZNF384 fusion-positive patients

are summarized in Table 1. The patients were aged between 7 and
17 years (mean: 11.5 ± 3.8), comprised four males and two females,
and were all classified into an intermediate risk group at the initial
diagnosis based on an advanced age.13 Their initial white blood
cell count ranged from 2300 to 17 330 (mean: 8730 ± 5849). All
patients showed a good response to steroid monotherapy, using
the cutoff of 1000/μl for the blast count in peripheral blood on day
8.13 All six patients achieved complete hematological remission
after induction therapy. Four patients (Cases 2, 3, 4 and 6)
completed the entire protocol and maintained complete remis-
sion for 4–10 years. One patient (Case 5) received maintenance
therapy and was in complete remission for 2 years and 1 month.
The remaining patient (Case 1) also completed the initial therapy,
but he relapsed in the off-therapy period, and he is now in his
fourth complete remission after a second bone marrow
transplantation.
Importantly, the predicted chromosomal translocation t(12;22)

(p13;q13) was not detected in all six cases by conventional
G-banding, and five patients (Cases 2–6) showed a normal
karyotype on cytogenetic analysis. The remaining patient (Case
1), who had relapsed three times, consistently showed 46,XY, t

(9;10)(p13;p13) from the initial diagnosis through to the third
relapse, whereas corresponding gene fusion was not identified by
whole transcriptome sequencing. As FISH confirmed the presence
of EP300–ZNF384 translocation in Case 1 and 954 among 1000
cells showed positive fusion signals, it is suggested that
translocation leading to EP300–ZNF384 is difficult to detect with
conventional G-banding.
All six EP300–ZNF384+ cases revealed dull or negative expres-

sion of CD10 based on immunophenotypic examination
(Supplementary Figure 2, Supplementary Table). They also
exhibited negative expression of cytoplasmic μ chain. In addition,
each case aberrantly expressed one or more myeloid antigen(s),
including CD13 and CD33. Therefore, most BCP-ALL patients
carrying the EP300–ZNF384 fusion gene may be predictable based
on their characteristic immunophenotype.
The EP300–ZNF384 fusion and conventional cytogenetic

abnormalities are mutually exclusive. FISH analysis revealed that
a vast majority of leukemic blasts express the fusion. The above
data suggest the involvement of this fusion gene in the
development of BCP-ALL, whereas the functional role of this
fusion gene is not yet known. As we present in Figure 1a, the
EP300–ZNF384 fusion protein is predicted to lack the HAT domain
of EP300. It has been suggested that the deregulation of
acetylation could lead to a disruption in the balance between
proliferation and differentiation during hematopoiesis and in vivo
structure–function analysis of EP300 by others demonstrated that
the loss of HAT activity results in an increase in the numbers and
proliferative potential of hematopoietic progenitors and stem
cells.14 Furthermore, it has been reported that some B-cell
lymphoma harbor frequent structural alterations inactivating
CREBBP or EP300 as a major pathogenetic mechanism, reading
to specific defects in acetylation-mediated inactivation of the BCL6
oncoprotein and activation of the p53 tumor suppressor.15

Therefore, the N-terminal portion of EP300 without the HAT
domains in the EP300–ZNF384 fusion may be involved in the
development of ALL by deregulating acetylation, but further
functional evaluation is necessary.
In contrast, the complete ZNF384 sequence is retained in the

EP300–ZNF384 fusion, being the same as in cases of other ZNF384-
related recurrent fusions observed in acute leukemia.10,11 Both
EWSR1–ZNF384 and TAF15–ZNF384 have transforming properties in
NIH3T3 cells, but do not alter expressions of known ZNF384 target
genes.10 The functions of the ZNF384 gene in these fusion genes
remain unclear and should also be investigated in the future.
In conclusion, we identified a novel recurrent fusion gene

between the EP300 and ZNF384 genes in children with BCP-ALL.
Further studies involving a large series of patients should be
conducted to elucidate the oncogenic properties of EP300–ZNF384

Table 1. Clinical findings of patients

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Age at initial diagnosis 7 13 7 10 17 15
Gender M M M F M F
Methods RNAseq, PCR, FISH RNAseq, PCR PCR PCR PCR PCR
Samples obtained at: Second and third relapse Newly diagnosed Newly diagnosed Newly diagnosed Newly diagnosed Newly diagnosed
Current status In fourth CR In first CR In first CR In first CR In first CR In first CR
Duration of event-free survival 4y 4m 8y 6m+ 10y 1m+ 9y 5m+ 2y 1m+ 4y 2m+
Duration of overall survival 10y 11m+ Same as above Same as above Same as above Same as above Same as above
Study Others L0416/0616 L0416/0616 L0416/0616 Others Others
Initial WBC 17 380 10 500 14 600 2600 2300 5000
Day 8 blasts (per ml) 66 162 80 0 0 0
CNS involvement No No No No No No
Risk classification IR IR IR IR IR IR
Cytogenetics 46,XY, t(9;10)(p13;p13) 20/20 46,XY (20/20) 46,XY (20/20) 46,XX (20/20) 46XY (10/10) 46XX (20/20)

Abbreviations: CNS, central nervous system; CR, complete remission; F, female; FISH, fluorescence in situ hybridization; IR, intermediate risk group; M, male;
m, months; WBC, white blood cell; y, years. Clinical findings of patients with the EP300–ZNF384 fusion gene are summarized.
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and confirm the clinical and biological features of patients with
BCP-ALL harboring the EP300–ZNF384 fusion gene.
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