64 research outputs found
Long-lived neutral-kaon flux measurement for the KOTO experiment
The KOTO ( at Tokai) experiment aims to observe the CP-violating rare
decay by using a long-lived neutral-kaon
beam produced by the 30 GeV proton beam at the Japan Proton Accelerator
Research Complex. The flux is an essential parameter for the measurement
of the branching fraction. Three neutral decay modes, , , and were used to
measure the flux in the beam line in the 2013 KOTO engineering run. A
Monte Carlo simulation was used to estimate the detector acceptance for these
decays. Agreement was found between the simulation model and the experimental
data, and the remaining systematic uncertainty was estimated at the 1.4\%
level. The flux was measured as per protons on a
66-mm-long Au target.Comment: 27 pages, 16 figures. To be appeared in Progress of Theoretical and
Experimental Physic
Search for the decay
We performed a search for the decay with the
E391a detector at KEK. In the data accumulated in 2005, no event was observed
in the signal region. Based on the assumption of
proceeding via parity-violation, we obtained the single event sensitivity to be
, and set an upper limit on the branching ratio to
be at the 90% confidence level. This is a factor of 3.2
improvement compared to the previous results. The results of proceeding via parity-conservation were also presented in this paper
Experimental study of the decay
The first dedicated search for the rare neutral-kaon decay
has been carried out in the E391a experiment at the
KEK 12-GeV proton synchrotron. The final upper limit of 2.6 at
the 90% confidence level was set on the branching ratio for the decay.Comment: 23 pages, 27 figures, accepted for publication as a regular article
in Physical Review
Conservation and divergence within the clathrin interactome of <i>Trypanosoma cruzi</i>
Trypanosomatids are parasitic protozoa with a significant burden on human health. African and American trypanosomes are causative agents of Nagana and Chagas disease respectively, and speciated about 300 million years ago. These parasites have highly distinct life cycles, pathologies, transmission strategies and surface proteomes, being dominated by the variant surface glycoprotein (African) or mucins (American) respectively. In African trypanosomes clathrin-mediated trafficking is responsible for endocytosis and post-Golgi transport, with several mechanistic aspects distinct from higher organisms. Using clathrin light chain (TcCLC) and EpsinR (TcEpsinR) as affinity handles, we identified candidate clathrin-associated proteins (CAPs) in Trypanosoma cruzi; the cohort includes orthologs of many proteins known to mediate vesicle trafficking, but significantly not the AP-2 adaptor complex. Several trypanosome-specific proteins common with African trypanosomes, were also identified. Fluorescence microscopy revealed localisations for TcEpsinR, TcCLC and TcCHC at the posterior region of trypomastigote cells, coincident with the flagellar pocket and Golgi apparatus. These data provide the first systematic analysis of clathrin-mediated trafficking in T. cruzi, allowing comparison between protein cohorts and other trypanosomes and also suggest that clathrin trafficking in at least some life stages of T. cruzi may be AP-2-independent
Quantitative Mass Spectrometry Analysis Reveals Similar Substrate Consensus Motif for Human Mps1 Kinase and Plk1
Background Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1 (hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the upstream kinases responsible for these phosphorylations are not presently known. Methodology/Principal Findings Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation. Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these two mitotic kinases share a similar substrate consensus. Conclusions/Significance hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1 autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase
Mps1Mph1 kinase phosphorylates Mad3 to inhibit Cdc20Slp1-APC/C and maintain spindle checkpoint arrests
<div><p>The spindle checkpoint is a mitotic surveillance system which ensures equal segregation of sister chromatids. It delays anaphase onset by inhibiting the action of the E3 ubiquitin ligase known as the anaphase promoting complex or cyclosome (APC/C). Mad3/BubR1 is a key component of the mitotic checkpoint complex (MCC) which binds and inhibits the APC/C early in mitosis. Mps1<sup>Mph1</sup> kinase is critical for checkpoint signalling and MCC-APC/C inhibition, yet few substrates have been identified. Here we identify Mad3 as a substrate of fission yeast Mps1<sup>Mph1</sup> kinase. We map and mutate phosphorylation sites in Mad3, producing mutants that are targeted to kinetochores and assembled into MCC, yet display reduced APC/C binding and are unable to maintain checkpoint arrests. We show biochemically that Mad3 phospho-mimics are potent APC/C inhibitors <i>in vitro</i>, demonstrating that Mad3p modification can directly influence Cdc20<sup>Slp1</sup>-APC/C activity. This genetic dissection of APC/C inhibition demonstrates that Mps1<sup>Mph1</sup> kinase-dependent modifications of Mad3 and Mad2 act in a concerted manner to maintain spindle checkpoint arrests.</p></div
- …