28 research outputs found

    Agricultural resource and risk management with multiperiod stochastics: A case of the mixed crop-livestock production system in the drylands of Jordan

    Get PDF
    Generally, agricultural production involves several challenges. In the drylands, it is further complicated by weather-related risks and resource degradation. In this paper, we present a case study of the mixed crop-livestock production system in Jordan. To better capture the nature of response farming in the drylands, we develop a methodology for using crop simulation models to directly generate data for optimizing production practices of an integrated crop-livestock producing household in a dynamic stochastic context. The approach optimizes producer's adaptations to random events, such as weather, which are realized throughout the planning horizon. To ensure the sustainability of the optimized production decisions, long-term valuations of end of horizon soil attributes are included in the objective function. This approach endogenizes the tradeoff between short-and long-run productivity. Model results show that due to the limited natural resource endowments and financial liquidity constraints of the typical farm households in the study area, we find these households have limited options. To optimally respond to weather conditions during the production season, better manage risk, and achieve improvements in soil attributes, a typical household would need larger farm size, larger flock, and better financial liquidity than it currently commands. Like all such models, the farm household model used in this paper is not suitable for drawing policy implications. Therefore, targeted analysis using appropriate sectoral or economy-wide models will be needed in the future to identify and test the efficacy of different policy and institutional interventions including land consolidation, establishment of producer and marketing cooperatives, access to financial services including agricultural credit, and crop insurance in expanding the resource base of farmers-thereby positioning them for higher earnings, ensuring soil conservation, and enhancing the sustainability of the production system

    Association mapping of spot blotch resistance in wild barley

    Get PDF
    Spot blotch, caused by Cochliobolus sativus, is an important foliar disease of barley. The disease has been controlled for over 40 years through the deployment of cultivars with durable resistance derived from the line NDB112. Pathotypes of C. sativus with virulence for the NDB112 resistance have been detected in Canada; thus, many commercial cultivars are vulnerable to spot blotch epidemics. To increase the diversity of spot blotch resistance in cultivated barley, we evaluated 318 diverse wild barley accessions comprising the Wild Barley Diversity Collection (WBDC) for reaction to C. sativus at the seedling stage and utilized an association mapping (AM) approach to identify and map resistance loci. A high frequency of resistance was found in the WBDC as 95% (302/318) of the accessions exhibited low infection responses. The WBDC was genotyped with 558 Diversity Array Technology (DArT®) and 2,878 single nucleotide polymorphism (SNP) markers and subjected to structure analysis before running the AM procedure. Thirteen QTL for spot blotch resistance were identified with DArT and SNP markers. These QTL were found on chromosomes 1H, 2H, 3H, 5H, and 7H and explained from 2.3 to 3.9% of the phenotypic variance. Nearly half of the identified QTL mapped to chromosome bins where spot blotch resistance loci were previously reported, offering some validation for the AM approach. The other QTL mapped to unique genomic regions and may represent new spot blotch resistance loci. This study demonstrates that AM is an effective technique for identifying and mapping QTL for disease resistance in a wild crop progenitor

    Multicenter evaluation of the clinical utility of laparoscopy-assisted ERCP in patients with Roux-en-Y gastric bypass

    Get PDF
    Background and Aims The obesity epidemic has led to increased use of Roux-en-Y gastric bypass (RYGB). These patients have an increased incidence of pancreaticobiliary diseases yet standard ERCP is not possible due to surgically altered gastroduodenal anatomy. Laparoscopic-ERCP (LA-ERCP) has been proposed as an option but supporting data are derived from single center small case-series. Therefore, we conducted a large multicenter study to evaluate the feasibility, safety, and outcomes of LA-ERCP. Methods This is retrospective cohort study of adult patients with RYGB who underwent LA-ERCP in 34 centers. Data on demographics, indications, procedure success, and adverse events were collected. Procedure success was defined when all of the following were achieved: reaching the papilla, cannulating the desired duct and providing endoscopic therapy as clinically indicated. Results A total of 579 patients (median age 51, 84% women) were included. Indication for LA-ERCP was biliary in 89%, pancreatic in 8%, and both in 3%. Procedure success was achieved in 98%. Median total procedure time was 152 minutes (IQR 109-210) with median ERCP time 40 minutes (IQR 28-56). Median hospital stay was 2 days (IQR 1-3). Adverse events were 18% (laparoscopy-related 10%, ERCP-related 7%, both 1%) with the clear majority (92%) classified as mild/moderate whereas 8% were severe and 1 death occurred. Conclusion Our large multicenter study indicates that LA-ERCP in patients with RYGB is feasible with a high procedure success rate comparable with that of standard ERCP in patients with normal anatomy. ERCP-related adverse events rate is comparable with conventional ERCP, but the overall adverse event rate was higher due to the added laparoscopy-related events

    Dryland Systems: Overview and Implementation at the Jordan Site

    No full text
    corecore