1,723 research outputs found

    Self-Supplied Nano-Fusing and Transferring Metal Nanostructures via Surface Oxide Reduction

    Get PDF
    Here, we demonstrate that chemical reduction of oxide layers on metal nanostructures fuses junctions at nanoscale to improve the opto-electrical performance, and to ensure environmental stability of the interconnected nanonetwork. In addition, the reducing reaction lowers the adhesion force between metal nanostructures and substrates, facilitating the detachment of them from substrates. Detached metal nanonetworks can be easily floated on water and transferred onto various substrates including hydrophobic, floppy, and curved surfaces. Utilizing the detached metal nanostructures, semitransparent organic photovoltaics is fabricated, presenting the applicability of proposed reduction treatment in the device applications

    Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight

    Full text link
    Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ~38.5 km with an average atmospheric overburden of ~3.9 g cm2^{-2}. Individual elements are clearly separated with a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of -2.66 ±\pm 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 ±\pm 0.02 for helium nuclei from 630 GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a few tens of GeV/nucleon. The helium flux is higher than that expected from the extrapolation of the power law fitted to the lower-energy data. The relative abundance of protons to helium nuclei is 9.1 ±\pm 0.5 for the range from 2.5 TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the previous measurements at a few tens of GeV/nucleon.Comment: 20 pages, 4 figure

    Beam test calibration of the balloon-borne imaging calorimeter for the CREAM experiment

    Full text link
    CREAM (Cosmic Ray Energetics And Mass) is a multi-flight balloon mission designed to collect direct data on the elemental composition and individual energy spectra of cosmic rays. Two instrument suites have been built to be flown alternately on a yearly base. The tungsten/Sci-Fi imaging calorimeter for the second flight, scheduled for December 2005, was calibrated with electron and proton beams at CERN. A calibration procedure based on the study of the longitudinal shower profile is described and preliminary results of the beam test are presented.Comment: 4 pages, 4 figures. To be published in the Proceedings of 29th International Cosmic Ray Conference (ICRC 2005), Pune, India, August 3-10, 200

    Energy spectra of cosmic-ray nuclei at high energies

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to 1014\sim 10^{14} eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E2.66±0.04E^{-2.66 \pm 0.04} power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/nn energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080±0.0250.080 \pm 0.025 (stat.)±0.025 \pm 0.025 (sys.) at \sim 800 GeV/nn, in good agreement with a recent result from the first CREAM flight.Comment: 32 pages, 10 figures. Accepted for publication in Astrophysical Journa

    Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer

    Get PDF
    Primary and atmospheric cosmic-ray spectra were precisely measured with the BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve seven times higher resolution in momentum measurement. We report absolute fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and 1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.

    Elemental energy spectra of cosmic rays measured by CREAM-II

    Full text link
    We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment CREAM (Cosmic Ray Energetics And Mass). The instrument (CREAM-II) was comprised of detectors based on different techniques (Cherenkov light, specific ionization in scintillators and silicon sensors) to provide a redundant charge identification and a thin ionization calorimeter capable of measuring the energy of cosmic rays up to several hundreds of TeV. The data analysis is described and the individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14 eV. The spectral shape looks nearly the same for all the primary elements and can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen absolute intensity in the energy range 100-800 GeV/n is also measured.Comment: 4 pages, 3 figures, presented at ICRC 2009, Lodz, Polan
    corecore