3,963 research outputs found
Shallow Triple Stream Three-dimensional CNN (STSTNet) for Micro-expression Recognition
In the recent year, state-of-the-art for facial micro-expression recognition
have been significantly advanced by deep neural networks. The robustness of
deep learning has yielded promising performance beyond that of traditional
handcrafted approaches. Most works in literature emphasized on increasing the
depth of networks and employing highly complex objective functions to learn
more features. In this paper, we design a Shallow Triple Stream
Three-dimensional CNN (STSTNet) that is computationally light whilst capable of
extracting discriminative high level features and details of micro-expressions.
The network learns from three optical flow features (i.e., optical strain,
horizontal and vertical optical flow fields) computed based on the onset and
apex frames of each video. Our experimental results demonstrate the
effectiveness of the proposed STSTNet, which obtained an unweighted average
recall rate of 0.7605 and unweighted F1-score of 0.7353 on the composite
database consisting of 442 samples from the SMIC, CASME II and SAMM databases.Comment: 5 pages, 1 figure, Accepted and published in IEEE FG 201
A general formula of the effective potential in 5D SU(N) gauge theory on orbifold
We show a general formula of the one loop effective potential of the 5D SU(N)
gauge theory compactified on an orbifold, . The formula shows the case
when there are fundamental, (anti-)symmetric tensor and adjoint
representational bulk fields. Our calculation method is also applicable when
there are bulk fields belonging to higher dimensional representations. The
supersymmetric version of the effective potential with Scherk-Schwarz breaking
can be obtained straightforwardly. We also show some examples of effective
potentials in SU(3), SU(5) and SU(6) models with various boundary conditions,
which are reproduced by our general formula.Comment: 22 pages;minor corrections;references added;typos correcte
An apprach to generate large and small leptonic mixing angles
We take up the point of view that Yukawa couplings can be either 0 or 1, and
the mass patterns of fermions are generated purely from the structure of the
Yukawa matrices. We utilize such neutrino as well as charged leptonic textures
which lead to (maximal) mixing angles of in each sector for relevant
transitions. The combined leptonic CKM mixing angles are
which lead to very small relevant to solar neutrino and LSND
experiments. We propose that on the other hand the absence of the charged
leptonic partner of the sterile neutrino maintains the angle from the
neutrino sector for the transition and hence
atmospheric neutrino anomaly is explained through maximal mixing
Area spectra of the rotating BTZ black hole from quasinormal modes
Following Bekenstein's suggestion that the horizon area of a black hole
should be quantized, the discrete spectrum of the horizon area has been
investigated in various ways. By considering the quasinormal mode of a black
hole, we obtain the transition frequency of the black hole, analogous to the
case of a hydrogen atom, in the semiclassical limit. According to Bohr's
correspondence principle, this transition frequency at large quantum number is
equal to classical oscillation frequency. For the corresponding classical
system of periodic motion with this oscillation frequency, an action variable
is identified and quantized via Bohr-Sommerfeld quantization, from which the
quantized spectrum of the horizon area is obtained. This method can be applied
for black holes with discrete quasinormal modes. As an example, we apply the
method for the both non-rotating and rotating BTZ black holes and obtain that
the spectrum of the horizon area is equally spaced and independent of the
cosmological constant for both cases
On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo
solution of the Einstein Equations in terms of bars. We find that each
multi-pole correspond to the Newtonian potential of a bar with linear density
proportional to a Legendre Polynomial. We use this fact to find an integral
representation of the function. These integral representations are
used in the context of the inverse scattering method to find solutions
associated to one or more rotating bodies each one with their own multi-polar
structure.Comment: To be published in Classical and Quantum Gravit
Exact location of the multicritical point for finite-dimensional spin glasses: A conjecture
We present a conjecture on the exact location of the multicritical point in
the phase diagram of spin glass models in finite dimensions. By generalizing
our previous work, we combine duality and gauge symmetry for replicated random
systems to derive formulas which make it possible to understand all the
relevant available numerical results in a unified way. The method applies to
non-self-dual lattices as well as to self dual cases, in the former case of
which we derive a relation for a pair of values of multicritical points for
mutually dual lattices. The examples include the +-J and Gaussian Ising spin
glasses on the square, hexagonal and triangular lattices, the Potts and Z_q
models with chiral randomness on these lattices, and the three-dimensional +-J
Ising spin glass and the random plaquette gauge model.Comment: 27 pages, 3 figure
Meanfield treatment of Bragg scattering from a Bose-Einstein condensate
A unified semiclassical treatment of Bragg scattering from Bose-Einstein
condensates is presented. The formalism is based on the Gross-Pitaevskii
equation driven by classical light fields far detuned from atomic resonance. An
approximate analytic solution is obtained and provides quantitative
understanding of the atomic momentum state oscillations, as well as a simple
expression for the momentum linewidth of the scattering process. The validity
regime of the analytic solution is derived, and tested by three dimensional
cylindrically symmetric numerical simulations.Comment: 21 pages, 10 figures. Minor changes made to documen
Assessing and Improving the Reliability of Volunteered Land Cover Reference Data
Volunteered geographic data are being used increasingly to support land cover mapping and validation, yet the reliability of the volunteered data still requires further research. This study proposes data-based guidelines to help design the data collection by assessing the reliability of volunteered data collected using the Geo-Wiki tool. We summarized the interpretation difficulties of the volunteers at a global scale, including those areas and land cover types that generate the most confusion. We also examined the factors affecting the reliability of majority opinion and individual classification. The results showed that the highest interpretation inconsistency of the volunteers occurred in the ecoregions of tropical and boreal forests (areas with relatively poor coverage of very high resolution images), the tundra (a unique region that the volunteers are unacquainted with), and savannas (transitional zones). The volunteers are good at identifying forests, snow/ice and croplands, but not grasslands and wetlands. The most confusing pairs of land cover types are also captured in this study and they vary greatly with different biomes. The reliability can be improved by providing more high resolution ancillary data, more interpretation keys in tutorials, and tools that assist in coverage estimation for those areas and land cover types that are most prone to confusion. We found that the reliability of the majority opinion was positively correlated with the percentage of volunteers selecting this choice and negatively related to their self-evaluated uncertainty when very high resolution images were available. Factors influencing the reliability of individual classifications were also compared and the results indicated that the interpretation difficulty of the target sample played a more important role than the knowledge base of the volunteers. The professional background and local knowledge had an influence on the interpretation performance, especially in identifying vegetation land cover types other than croplands. These findings can help in building a better filtering system to improve the reliability of volunteered data used in land cover validation and other applications
Visibility diagrams and experimental stripe structure in the quantum Hall effect
We analyze various properties of the visibility diagrams that can be used in
the context of modular symmetries and confront them to some recent experimental
developments in the Quantum Hall Effect. We show that a suitable physical
interpretation of the visibility diagrams which permits one to describe
successfully the observed architecture of the Quantum Hall states gives rise
naturally to a stripe structure reproducing some of the experimental features
that have been observed in the study of the quantum fluctuations of the Hall
conductance. Furthermore, we exhibit new properties of the visibility diagrams
stemming from the structure of subgroups of the full modular group.Comment: 8 pages in plain TeX, 7 figures in a single postscript fil
Inflation might be caused by the right
We show that the scalar field that drives inflation can have a dynamical
origin, being a strongly coupled right handed neutrino condensate. The
resulting model is phenomenologically tightly constrained, and can be
experimentally (dis)probed in the near future. The mass of the right handed
neutrino obtained this way (a crucial ingredient to obtain the right light
neutrino spectrum within the see-saw mechanism in a complete three generation
framework) is related to that of the inflaton and both completely determine the
inflation features that can be tested by current and planned experiments.Comment: 15 pages, 4 figure
- …
