5 research outputs found
Explicit-Duration Hidden Markov Model Inference of UP-DOWN States from Continuous Signals
Neocortical neurons show UP-DOWN state (UDS) oscillations under a variety of conditions. These UDS have been extensively studied because of the insight they can yield into the functioning of cortical networks, and their proposed role in putative memory formation. A key element in these studies is determining the precise duration and timing of the UDS. These states are typically determined from the membrane potential of one or a small number of cells, which is often not sufficient to reliably estimate the state of an ensemble of neocortical neurons. The local field potential (LFP) provides an attractive method for determining the state of a patch of cortex with high spatio-temporal resolution; however current methods for inferring UDS from LFP signals lack the robustness and flexibility to be applicable when UDS properties may vary substantially within and across experiments. Here we present an explicit-duration hidden Markov model (EDHMM) framework that is sufficiently general to allow statistically principled inference of UDS from different types of signals (membrane potential, LFP, EEG), combinations of signals (e.g., multichannel LFP recordings) and signal features over long recordings where substantial non-stationarities are present. Using cortical LFPs recorded from urethane-anesthetized mice, we demonstrate that the proposed method allows robust inference of UDS. To illustrate the flexibility of the algorithm we show that it performs well on EEG recordings as well. We then validate these results using simultaneous recordings of the LFP and membrane potential (MP) of nearby cortical neurons, showing that our method offers significant improvements over standard methods. These results could be useful for determining functional connectivity of different brain regions, as well as understanding network dynamics
Robust Off- and Online Separation of Intracellularly Recorded Up and Down Cortical States
BACKGROUND: The neuronal cortical network generates slow (<1 Hz) spontaneous rhythmic activity that emerges from the recurrent connectivity. This activity occurs during slow wave sleep or anesthesia and also in cortical slices, consisting of alternating up (active, depolarized) and down (silent, hyperpolarized) states. The search for the underlying mechanisms and the possibility of analyzing network dynamics in vitro has been subject of numerous studies. This exposes the need for a detailed quantitative analysis of the membrane fluctuating behavior and computerized tools to automatically characterize the occurrence of up and down states. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular recordings from different areas of the cerebral cortex were obtained from both in vitro and in vivo preparations during slow oscillations. A method that separates up and down states recorded intracellularly is defined and analyzed here. The method exploits the crossover of moving averages, such that transitions between up and down membrane regimes can be anticipated based on recent and past voltage dynamics. We demonstrate experimentally the utility and performance of this method both offline and online, the online use allowing to trigger stimulation or other events in the desired period of the rhythm. This technique is compared with a histogram-based approach that separates the states by establishing one or two discriminating membrane potential levels. The robustness of the method presented here is tested on data that departs from highly regular alternating up and down states. CONCLUSIONS/SIGNIFICANCE: We define a simple method to detect cortical states that can be applied in real time for offline processing of large amounts of recorded data on conventional computers. Also, the online detection of up and down states will facilitate the study of cortical dynamics. An open-source MATLAB toolbox, and Spike 2-compatible version are made freely available
Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo
During NREM sleep and under certain types of anaesthesia, the mammalian brain exhibits a distinctive slow (<1 Hz) rhythm. At the cellular level, this rhythm correlates with so-called UP and DOWN membrane potential states. In the neocortex, these UP and DOWN states correspond to periods of intense network activity and widespread neuronal silence, respectively, whereas in thalamocortical (TC) neurons, UP/DOWN states take on a more stereotypical oscillatory form, with UP states commencing with a low-threshold Ca2+ potential (LTCP). Whilst these properties are now well recognised for neurons in cats and rats, whether or not they are also shared by neurons in the mouse is not fully known. To address this issue, we obtained intracellular recordings from neocortical and TC neurons during the slow (<1 Hz) rhythm in anaesthetised mice. We show that UP/DOWN states in this species are broadly similar to those observed in cats and rats, with UP states in neocortical neurons being characterised by a combination of action potential output and intense synaptic activity, whereas UP states in TC neurons always commence with an LTCP. In some neocortical and TC neurons, we observed ‘spikelets’ during UP states, supporting the possible presence of electrical coupling. Lastly, we show that, upon tonic depolarisation, UP/DOWN states in TC neurons are replaced by rhythmic high-threshold bursting at ~5 Hz, as predicted by in vitro studies. Thus, UP/DOWN state generation appears to be an elemental and conserved process in mammals that underlies the slow (<1 Hz) rhythm in several species, including humans
High-Throughput Analysis of in-vitro LFP Electrophysiological Signals: A validated workflow/software package
Synchronized brain activity in the form of alternating epochs of massive persistent network activity and periods of generalized neural silence, has been extensively studied as a fundamental form of circuit dynamics, important for many cognitive functions including short-term memory, memory consolidation, or attentional modulation. A key element in such studies is the accurate determination of the timing and duration of those network events. The local field potential (LFP) is a particularly attractive method for recording network activity, because it allows for long and stable recordings from multiple sites, allowing researchers to estimate the functional connectivity of local networks. Here, we present a computational method for the automatic detection and quantification of in-vitro LFP events, aiming to overcome the limitations of current approaches (e.g. slow analysis speed, arbitrary threshold-based detection and lack of reproducibility across and within experiments). The developed method is based on the implementation of established signal processing and machine learning approaches, is fully automated and depends solely on the data. In addition, it is fast, highly efficient and reproducible. The performance of the software is compared against semi-manual analysis and validated by verification of prior biological knowledge