19 research outputs found

    Calreticulin is required for development of the cumulus oocyte complex and female fertility

    Get PDF
    Calnexin (CANX) and calreticulin (CALR) chaperones mediate nascent glycoprotein folding in the endoplasmic reticulum. Here we report that these chaperones have distinct roles in male and female fertility. Canx null mice are growth retarded but fertile. Calr null mice die during embryonic development, rendering indeterminate any effect on reproduction. Therefore, we conditionally ablated Calr in male and female germ cells using Stra8 (mcKO) and Zp3 (fcKO) promoter-driven Cre recombinase, respectively. Calr mcKO male mice were fertile, but fcKO female mice were sterile despite normal mating behavior. Strikingly, we found that Calr fcKO female mice had impaired folliculogenesis and decreased ovulatory rates due to defective proliferation of cuboidal granulosa cells. Oocyte-derived, TGF-beta family proteins play a major role in follicular development and molecular analysis revealed that the normal processing of GDF9 and BMP15 was defective in Calr fcKO oocytes. These findings highlight the importance of CALR in female reproduction and demonstrate that compromised CALR function leads to ovarian insufficiency and female infertility

    Calsperin is a testis-specific chaperone required for sperm fertility

    Get PDF
    Calnexin (CANX) and calreticulin (CALR) are homologous lectin chaperones located in the endoplasmic reticulum and cooperate to mediate nascent glycoprotein folding. In the testis, calmegin (CLGN) and calsperin (CALR3) are expressed as germ cell-specific counterparts of CANX and CALR, respectively. Here, we show that Calr3(−/−) males produced apparently normal sperm but were infertile because of defective sperm migration from the uterus into the oviduct and defective binding to the zona pellucida. Whereas CLGN was required for ADAM1A/ADAM2 dimerization and subsequent maturation of ADAM3, a sperm membrane protein required for fertilization, we show that CALR3 is a lectin-deficient chaperone directly required for ADAM3 maturation. Our results establish the client specificity of CALR3 and demonstrate that the germ cell-specific CALR-like endoplasmic reticulum chaperones have contrasting functions in the development of male fertility. The identification and understanding of the maturation mechanisms of key sperm proteins will pave the way toward novel approaches for both contraception and treatment of unexplained male infertility

    Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization

    No full text
    To fuse with oocytes, spermatozoa of eutherian mammals must pass through extracellular coats, the cumulus cell layer, and the zona pellucida (ZP). It is generally believed that the acrosome reaction (AR) of spermatozoa, essential for zona penetration and fusion with oocytes, is triggered by sperm contact with the zona pellucida. Therefore, in most previous studies of sperm–oocyte interactions in the mouse, the cumulus has been removed before insemination to facilitate the examination of sperm–zona interactions. We used transgenic mouse spermatozoa, which enabled us to detect the onset of the acrosome reaction using fluorescence microscopy. We found that the spermatozoa that began the acrosome reaction before reaching the zona were able to penetrate the zona and fused with the oocyte's plasma membrane. In fact, most fertilizing spermatozoa underwent the acrosome reaction before reaching the zona pellucida of cumulus-enclosed oocytes, at least under the experimental conditions we used. The incidence of in vitro fertilization of cumulus-free oocytes was increased by coincubating oocytes with cumulus cells, suggesting an important role for cumulus cells and their matrix in natural fertilization

    Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice

    No full text
    Abstract Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201–12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract–enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the “gold standard” to determine whether a gene’s function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others

    Juno is the egg Izumo receptor and is essential for mammalian fertilization

    No full text
    Fertilisation occurs when sperm and egg recognise each other and fuse to form a new, genetically distinct organism. The molecular basis of sperm-egg recognition is unknown, but is likely to require interactions between receptor proteins displayed on their surface. Izumo1 is an essential sperm cell surface protein, but its egg receptor has remained a mystery. Here, we identify Juno as the receptor for Izumo1 on mouse eggs, and show this interaction is conserved within mammals. Female mice lacking Juno are infertile and Juno-deficient eggs do not fuse with normal sperm. Rapid shedding of Juno from the oolemma after fertilisation suggests a mechanism for the membrane block to polyspermy, ensuring eggs normally fuse with just a single sperm. Our discovery of an essential receptor pair at the nexus of conception provides opportunities for the rational development of new fertility treatments and contraceptives
    corecore