720 research outputs found

    Statistical properties of substorm auroral onset beads/rays

    Get PDF
    Auroral substorms are often associated with optical ray or bead structures during initial brightening (substorm auroral onset waves). Occurrence probabilities and properties of substorm onset waves have been characterized using 112 substorm events identified in Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imager data and compared to Rice Convection Model–Equilibrium (RCM-E) and kinetic instability properties. All substorm onsets were found to be associated with optical waves, and thus, optical waves are a common feature of substorm onset. Eastward propagating wave events are more frequent than westward propagating wave events and tend to occur during lower-latitude substorms (stronger solar wind driving). The wave propagation directions are organized by orientation of initial brightening arcs. We also identified notable differences in wave propagation speed, wavelength (wave number), period, and duration between westward and eastward propagating waves. In contrast, the wave growth rate does not depend on the propagation direction or substorm strength but is inversely proportional to the wave duration. This suggests that the waves evolve to poleward expansion at a certain intensity threshold and that the wave properties do not directly relate to substorm strengths. However, waves are still important for mediating the transition between the substorm growth phase and poleward expansion. The relation to arc orientation can be explained by magnetotail structures in the RCM-E, indicating that substorm onset location relative to the pressure peak determines the wave propagation direction. The measured wave properties agree well with kinetic ballooning interchange instability, while cross-field current instability and electromagnetic ion cyclotron instability give much larger propagation speed and smaller wave period

    New Insights into Dissipation in the Electron Layer During Magnetic Reconnection

    Full text link
    Detailed comparisons are reported between laboratory observations of electron-scale dissipation layers near a reconnecting X-line and direct two-dimensional full-particle simulations. Many experimental features of the electron layers, such as insensitivity to the ion mass, are reproduced by the simulations; the layer thickness, however, is about 3-5 times larger than the predictions. Consequently, the leading candidate 2D mechanism based on collisionless electron nongyrotropic pressure is insufficient to explain the observed reconnection rates. These results suggest that, in addition to the residual collisions, 3D effects play an important role in electron-scale dissipation during fast reconnection.Comment: 17 pages, 4 figure

    Growth rates of the Weibel and tearing mode instabilities in a relativistic pair plasma

    Full text link
    We present an algorithm for solving the linear dispersion relation in an inhomogeneous, magnetised, relativistic plasma. The method is a generalisation of a previously reported algorithm that was limited to the homogeneous case. The extension involves projecting the spatial dependence of the perturbations onto a set of basis functions that satisfy the boundary conditions (spectral Galerkin method). To test this algorithm in the homogeneous case, we derive an analytical expression for the growth rate of the Weibel instability for a relativistic Maxwellian distribution and compare it with the numerical results. In the inhomogeneous case, we present solutions of the dispersion relation for the relativistic tearing mode, making no assumption about the thickness of the current sheet, and check the numerical method against the analytical expression.Comment: Accepted by PPC

    Barbicidal overdose

    Get PDF
    Acute severe methemoglobinaemia is an uncommon but life-threatening condition caused by a variety of oxidizing agents commonly used in both health care and industrial settings. Thus, recognition is important as it is readily treatable. The oxygen transport is compromised as a result of abnormal levels of oxidized haemoglobin, and this leads to skin discolouration and a variety of symptoms. Diagnostic confusion occurs as the oxygen saturations (SpO2) on the pulse oximeter are unreliable (Sharma V, Haber A. Acquired methaemoglobinaemia: a case report of benzocaine-induced methaemoglobinaemia and a review of the literature. Clin Pul Med. 2002;9(1):53–8). A case of severe methaemoglobinaemia due to self poisoning with barbicide is presented with a brief discussion of the patho-physiology and an overview of the treatment. A barbicidal overdose has never been reported before

    Simulating open quantum systems: from many-body interactions to stabilizer pumping

    Get PDF
    In a recent experiment, Barreiro et al. demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions [Nature 470, 486 (2011)]. Using up to five ions, single- and multi-qubit entangling gate operations were combined with optical pumping in stroboscopic sequences. This enabled the implementation of both coherent many-body dynamics as well as dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In the present paper, we present the theoretical framework of this gate-based ("digital") simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach minimal instances of spin models of interest in the context of topological quantum computing and condensed matter physics can be realized in state-of-the-art linear ion-trap quantum computing architectures. We outline concrete simulation schemes for Kitaev's toric code Hamiltonian and a recently suggested color code model. The presented simulation protocols can be adapted to scalable and two-dimensional ion-trap architectures, which are currently under development.Comment: 27 pages, 9 figures, submitted to NJP Focus on Topological Quantum Computatio

    3D Magnetic Reconnection with a spatially confined X-line extent -- Implications for Dipolarizing Flux Bundles and the Dawn-Dusk Asymmetry

    Full text link
    Using 3D particle-in-cell (PIC) simulations, we study magnetic reconnection with the x-line being spatially confined in the current direction. We include thick current layers to prevent reconnection at two ends of a thin current sheet that has a thickness on an ion inertial (di) scale. The reconnection rate and outflow speed drop significantly when the extent of the thin current sheet in the current direction is < O(10 di). When the thin current sheet extent is long enough, we find it consists of two distinct regions; an inactive region (on the ion-drifting side) exists adjacent to the active region where reconnection proceeds normally as in a 2D case. The extent of this inactive region is ~ O(10 di), and it suppresses reconnection when the thin current sheet extent is comparable or shorter. The time-scale of current sheet thinning toward fast reconnection can be translated into the spatial-scale of this inactive region; because electron drifts inside the ion diffusion region transport the reconnected magnetic flux, that drives outflows and furthers the current sheet thinning, away from this region. This is a consequence of the Hall effect in 3D. While this inactive region may explain the shortest possible azimuthal extent of dipolarizing flux bundles at Earth, it may also explain the dawn-dusk asymmetry observed at the magnetotail of Mercury, that has a global dawn-dusk extent much shorter than that of Earth.Comment: 9 pages, 9 figures, submitted to JGR on 01/23/201
    corecore