14 research outputs found

    Π”Π΅Π±ΡŽΡ‚ Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ΅ Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ PD-1/PD-L1-ΠΏΡƒΡ‚ΠΈ

    Get PDF
    Objective: to describe musculoskeletal immune-mediated adverse events (iAEs) associated with the therapy of solid tumors with immune checkpoint inhibitors (ICIs, inhibitors of the PD-1/PD-L1 pathway).Patients and methods. 13 patients receiving ICIs therapy with musculoskeletal iAEs were examined. The average age of patients was 59Β±10 years. All cases had a histologically verified diagnosis of a malignant solid neoplasm: melanoma (n=5), kidney cancer (n=3), bladder cancer (n=2), non-small cell lung cancer (n=1), breast cancer (n=1), cervical cancer (n=1). All patients were prescribed inhibitors of the PD-1/PD-L1 signaling pathway: nivolumab (n=6), pembrolizumab (n=3), atezolizumab (n=3), prolgolimab (n=1). In 7 (54%) patients, in addition to musculoskeletal disorders, other AEs were also detected: thyroiditis (n=3), neuropathy (n=2), rash (n=1), dry syndrome (n=1), hepatitis (n=1). The median time from the start of antitumor immunotherapy (IT) to the onset of musculoskeletal pathology was 20 [9; 48] weeks.Results and discussion. Clinical manifestations of musculoskeletal pathology included: synovitis in 9 (69%) patients, tenosynovitis in 11 (85%), enthesitis in 4 (31%), morning stiffness in the joints for more than 30 minutes in 4 (31%). In 11 cases, musculoskeletal pathology was persistent (in 9 patients with arthritis and 2 with periarthritis) and in 2 – transient. The knee (77%), shoulder (69%) and hand (54%) joints were most frequently affected, with bilateral involvement in 9 (69%) patients. Inflammatory changes in the joints were represented by mono- (n=1), oligo- (n=3) and polyarthritis (n=5), including those involving the small joints of the hands and/or feet (n=5) and predominantly affecting the joints of the lower limbs (n=3). In 3 patients with arthritis, periarticular changes dominated in clinical picture (in 2 patients with symmetrical polyarthritis and severe tenosynovitis, in another 1 patient – with RS3PE syndrome). The severity of musculoskeletal pathology was assessed using the CTCAE v5.0 toxicity criteria: grade 1 was documented in 2 (15.5%), grade 2 in 9 (69%), and grade 3 in 2 (15, 5%) patients. Laboratory workup revealed elevation of ESR β‰₯30 mm/h (median – 34 [14; 42] mm/h) in 7 out of 12 (58%) patients, elevation of CRP level >5 mg/l (median – 7.2 [4.6; 12.9] mg/l) – in 7 out of 10 (70%). In 7 out of 10 patients, antinuclear antibodies (Hep2) were detected in titers: 1:160 (n=2), 1:320 (n=3), 1:640 (n=2). Rheumatoid factor and antibodies to cyclic citrullinated peptide were not detected in any case. Therapy for musculoskeletal AEs included non-steroidal anti-inflammatory drugs (n=10), oral systemic glucocorticoids – GC (n=5), methotrexate – MT (n=1) and hydroxychloroquine (n=5), intra-articular administration of GC (n=1). Five patients with arthritis required long-term therapy (median duration – 12 [3; 12] months), in 1 patient with polyarthritis and severe tenosynovitis, antitumor IT was interrupted for the duration of the course of MTX treatment.Conclusion. It has been shown that musculoskeletal iAEs have heterogeneous manifestations and may require long-term treatment and in rare cases, anticancer therapy interruption. Additional studies and close cooperation between rheumatologists and oncologists are needed to obtain a more complete understanding of the nature and spectrum of musculoskeletal AEs, to identify their clinical, laboratory and instrumental features, and to develop an management of patients algorithm.ЦСль исслСдования – ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Π΅ иммуноопосрСдованныС Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ явлСния (иНЯ), ассоциированныС с Ρ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ солидных ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ (ИКВ, ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ PD-1/PD-L1-ΠΏΡƒΡ‚ΠΈ).ΠŸΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ОбслСдовано 13 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² со скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹ΠΌΠΈ иНЯ, ΠΏΠΎΠ»ΡƒΡ‡Π°ΡŽΡ‰ΠΈΡ… Ρ‚Π΅Ρ€Π°ΠΏΠΈΡŽ ИКВ. Π‘Ρ€Π΅Π΄Π½ΠΈΠΉ возраст Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… – 59Β±10 Π»Π΅Ρ‚. ВсСх случаях имСлся гистологичСски Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΠ· злокачСствСнного солидного новообразования: ΠΌΠ΅Π»Π°Π½ΠΎΠΌΠ° (n=5), Ρ€Π°ΠΊ ΠΏΠΎΡ‡ΠΊΠΈ (n=3), Ρ€Π°ΠΊ ΠΌΠΎΡ‡Π΅Π²ΠΎΠ³ΠΎ пузыря (n=2), Π½Π΅ΠΌΠ΅Π»ΠΊΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹ΠΉ Ρ€Π°ΠΊ Π»Π΅Π³ΠΊΠΎΠ³ΠΎ (n=1), Ρ€Π°ΠΊ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (n=1), Ρ€Π°ΠΊ шСйки ΠΌΠ°Ρ‚ΠΊΠΈ (n=1). ВсСм ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ Π±Ρ‹Π»ΠΈ Π½Π°Π·Π½Π°Ρ‡Π΅Π½Ρ‹ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ сигнального ΠΏΡƒΡ‚ΠΈ PD-1/PD-L1: Π½ΠΈΠ²ΠΎΠ»ΡƒΠΌΠ°Π± (n=6), ΠΏΠ΅ΠΌΠ±Ρ€ΠΎΠ»ΠΈΠ·ΡƒΠΌΠ°Π± (n=3), Π°Ρ‚Π΅Π·ΠΎΠ»ΠΈΠ·ΡƒΠΌΠ°Π± (n=3), ΠΏΡ€ΠΎΠ»Π³ΠΎΠ»ΠΈΠΌΠ°Π± (n=1). Π£ 7 (54%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΠΊΡ€ΠΎΠΌΠ΅ скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Ρ… Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ, Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ‹ΡΠ²Π»ΡΠ»ΠΈΡΡŒ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ иНЯ: Ρ‚ΠΈΡ€Π΅ΠΎΠΈΠ΄ΠΈΡ‚ (n=3), нСвропатия (n=2), ΡΡ‹ΠΏΡŒ (n=1), сухой синдром (n=1), Π³Π΅ΠΏΠ°Ρ‚ΠΈΡ‚ (n=1). МСдиана Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ ΠΈΠΌΠΌΡƒΠ½ΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (ИВ) Π΄ΠΎ Π΄Π΅Π±ΡŽΡ‚Π° скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ составила 20 [9; 48] Π½Π΅Π΄.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС. ΠšΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ проявлСния скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ: синовит Ρƒ 9 (69%) Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, тСносиновит Ρƒ 11 (85%), энтСзит Ρƒ 4 (31%), ΡƒΡ‚Ρ€Π΅Π½Π½ΡŽΡŽ ΡΠΊΠΎΠ²Π°Π½Π½ΠΎΡΡ‚ΡŒ Π² суставах Π±ΠΎΠ»Π΅Π΅ 30 ΠΌΠΈΠ½ Ρƒ 4 (31%). Π’ 11 случаях ΡΠΊΠ΅Π»Π΅Ρ‚Π½ΠΎΠΌΡ‹ΡˆΠ΅Ρ‡Π½Π°Ρ патология носила ΠΏΠ΅Ρ€ΡΠΈΡΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ (Ρƒ 9 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π°Ρ€Ρ‚Ρ€ΠΈΡ‚ΠΎΠΌ ΠΈ 2 с ΠΏΠ΅Ρ€ΠΈΠ°Ρ€Ρ‚Ρ€ΠΈΡ‚ΠΎΠΌ) ΠΈ Π² 2 – Ρ‚Ρ€Π°Π½Π·ΠΈΡ‚ΠΎΡ€Π½Ρ‹ΠΉ. НаиболСС часто ΠΏΠΎΡ€Π°ΠΆΠ°Π»ΠΈΡΡŒ ΠΊΠΎΠ»Π΅Π½Π½Ρ‹Π΅ (77%), ΠΏΠ»Π΅Ρ‡Π΅Π²Ρ‹Π΅ (69%) суставы ΠΈ суставы кистСй (54%) с двусторонним Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρƒ 9 (69%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². Π’ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ измСнСния суставов Π±Ρ‹Π»ΠΈ прСдставлСны ΠΌΠΎΠ½ΠΎ- (n=1), ΠΎΠ»ΠΈΠ³ΠΎ- (n=3) ΠΈ ΠΏΠΎΠ»ΠΈΠ°Ρ€Ρ‚Ρ€ΠΈΡ‚ΠΎΠΌ (n=5), Π² Ρ‚ΠΎΠΌ числС с Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Π»ΠΊΠΈΡ… суставов кистСй ΠΈ/ΠΈΠ»ΠΈ стоп (n=5) ΠΈ прСимущСствСнным ΠΏΠΎΡ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ суставов Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй (n=3). Π£ 3 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π°Ρ€Ρ‚Ρ€ΠΈΡ‚ΠΎΠΌ Π² клиничСской ΠΊΠ°Ρ€Ρ‚ΠΈΠ½Π΅ ΠΏΡ€Π΅ΠΎΠ±Π»Π°Π΄Π°Π»ΠΈ пСриартикулярныС измСнСния (Ρƒ 2 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с симмСтричным ΠΏΠΎΠ»ΠΈΠ°Ρ€Ρ‚Ρ€ΠΈΡ‚ΠΎΠΌ ΠΈ тяТСлым тСносиновитом, Π΅Ρ‰Π΅ Ρƒ 1 – с RS3PE-синдромом). Π’ΡΠΆΠ΅ΡΡ‚ΡŒ скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½ΠΎΠΉ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π±Ρ‹Π»Π° ΠΎΡ†Π΅Π½Π΅Π½Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² токсичности CTCAE v5.0: 1-я ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ установлСна Ρƒ 2 (15,5%), 2-я – Ρƒ 9 (69%) ΠΈ 3-я – Ρƒ 2 (15,5%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ². ΠŸΡ€ΠΈ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌ обслСдовании ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ БОЭ β‰₯30 ΠΌΠΌ/Ρ‡ (ΠΌΠ΅Π΄ΠΈΠ°Π½Π° – 34 [14; 42] ΠΌΠΌ/Ρ‡) выявлСно Ρƒ 7 ΠΈΠ· 12 (58%) Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Π‘Π Π‘ >5 ΠΌΠ³/Π» (ΠΌΠ΅Π΄ΠΈΠ°Π½Π° – 7,2 [4,6; 12,9] ΠΌΠ³/Π») – Ρƒ 7 ΠΈΠ· 10 (70%). Π£ 7 ΠΈΠ· 10 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ Π°Π½Ρ‚ΠΈΠ½ΡƒΠΊΠ»Π΅Π°Ρ€Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ (Hep2) Π² Ρ‚ΠΈΡ‚Ρ€Π°Ρ…: 1:160 (n=2), 1:320 (n=3), 1:640 (n=2). Π Π΅Π²ΠΌΠ°Ρ‚ΠΎΠΈΠ΄Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ ΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π° ΠΊ цикличСскому Ρ†ΠΈΡ‚Ρ€ΡƒΠ»Π»ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ ΠΏΠ΅ΠΏΡ‚ΠΈΠ΄Ρƒ Π½Π΅ выявлСны Π½ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ случаС. ВСрапия скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Ρ… иНЯ Π²ΠΊΠ»ΡŽΡ‡Π°Π»Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нСстСроидных ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² (n=10), ΠΎΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… систСмных Π³Π»ΡŽΠΊΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠΎΠΈΠ΄ΠΎΠ² – Π“Πš (n=5), мСтотрСксата – МВ (n=1) ΠΈ гидроксихлорохина (n=5), внутрисуставноС Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π“Πš (n=1). ΠŸΡΡ‚ΡŒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π°Ρ€Ρ‚Ρ€ΠΈΡ‚ΠΎΠΌ Π½ΡƒΠΆΠ΄Π°Π»ΠΈΡΡŒ Π² ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (ΠΌΠ΅Π΄ΠΈΠ°Π½Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ – 12 [3; 12] мСс), Ρƒ 1 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° с ΠΏΠΎΠ»ΠΈΠ°Ρ€Ρ‚Ρ€ΠΈΡ‚ΠΎΠΌ ΠΈ тяТСлым тСносиновитом противоопухолСвая ИВ Π±Ρ‹Π»Π° ΠΏΡ€Π΅Ρ€Π²Π°Π½Π° Π½Π° врСмя провСдСния курса лСчСния МВ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Показано, Ρ‡Ρ‚ΠΎ скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Π΅ иНЯ ΠΈΠΌΠ΅ΡŽΡ‚ Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ проявлСния ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ лСчСния, Π° Π² Ρ€Π΅Π΄ΠΊΠΈΡ… случаях – ΠΈ приостановки ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Для получСния Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ прСдставлСния ΠΎ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π΅ ΠΈ спСктрС скСлСтно-ΠΌΡ‹ΡˆΠ΅Ρ‡Π½Ρ‹Ρ… иНЯ, выдСлСния ΠΈΡ… ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΈ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… особСнностСй, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° ΠΊΡƒΡ€Π°Ρ†ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ исслСдования ΠΈ тСсноС сотрудничСство Ρ€Π΅Π²ΠΌΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΎΠ² ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΎΠ²

    BTK, NuTM2A, and PRPF19 are Novel KMT2A Partner Genes in Childhood Acute Leukemia

    Full text link
    Chromosomal rearrangements of the human KMT2A/MLL gene are associated with acute leukemias, especially in infants. KMT2A is rearranged with a big variety of partner genes and in multiple breakpoint locations. Detection of all types of KMT2A rearrangements is an essential part of acute leukemia initial diagnostics and follow-up, as it has a strong impact on the patients’ outcome. Due to their high heterogeneity, KMT2A rearrangements are most effectively uncovered by next-generation sequencing (NGS), which, however, requires a thorough prescreening by cytogenetics. Here, we aimed to characterize uncommon KMT2A rearrangements in childhood acute leukemia by conventional karyotyping, FISH, and targeted NGS on both DNA and RNA level with subse-quent validation. As a result of this comprehensive approach, three novel KMT2A rearrangements were discovered: ins(X;11)(q26;q13q25)/KMT2A-BTK, t(10;11)(q22;q23.3)/KMT2A-NUTM2A, and inv(11)(q12.2q23.3)/KMT2A-PRPF19. These novel KMT2A-chimeric genes expand our knowledge of the mechanisms of KMT2A-associated leukemogenesis and allow tracing the dynamics of minimal residual disease in the given patients. Β© 2021 by the authors. Licensee MDPI, Basel, Switzerland.Funding: KMT2A rearrangement assessment was supported by the Russian Science Foundation (grant no. 19-75-10056). Quantitative RT-PCR for MRD monitoring was supported by Russian Presidential (grant no. MK-1645.2020.7)

    The role of nelarabine in the treatment of T-cell acute lymphoblastic leukemia: literature review and own experience

    Get PDF
    Aim. The analysis of experience of nelarabine use in refractory/relapsed T-cell acute lymphoblastic leukemia (T-ALL) depending on the immunophenotype and the line of therapy. Materials and methods. All the patients with relapsed or refractory T-ALL aged from 0 to 18 years who received treatment with nelarabine as a part of the therapeutic element R6 were included in the study. For all patients a detailed immunological analysis of leukemia cells with discrimination of immunological variants TI, TII, TIII or TIV was performed. Patients administered with nelarabine as a first therapeutic element were referred to the first-line therapy group, other patients were referred to the second-line therapy group. Nelarabine was administered as intravenous infusion at a dose of 650 mg/m2, on days 1-5. Allogeneic hematopoietic stem cells transplantation (allo-HSCT) was considered for all patients. Results. From 2009 to 2017, 54 patients with refractory/relapsed T-ALL were treated with nelarabine. Five-year event-free survival (EFS) and overall survival (OS) was 28% for all patients, cumulative risk of relapse (CIR) was 27%. EFS was significantly higher in nelarabine first-line therapy group in comparison with second-line therapy group (34Β±8% vs 8Β±8%, p=0,05). In patients after allo-HSCT EFS, OS and CIR were 51Β±10%, 50Β±10% and 39,1Β±9,5% accordingly. The best results were achieved in patients with TI immunophenotype. No toxicity-related mortality as well as severe neurologic complications or discontinuation of therapy associated with use of nelarabine were reported. Conclusion. The use of nelarabine is an effective strategy for the treatment of relapsed and refractory T-ALL. The best treatment outcomes were obtained in patients with TI immunophenotype and in the first-line therapy group. Optimal dosage regimens can be established during controlled clinical trials

    The MLL recombinome of acute leukemias in 2017

    Get PDF
    Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients

    Epigenetic regulator genes direct lineage switching in MLL/AF4 leukaemia

    Get PDF
    The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukaemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukaemia resulting in poor clinical outcomes due to resistance towards chemo- and immuno-therapies. Here we show that the myeloid relapses share oncogene fusion breakpoints with their matched lymphoid presentations and can originate from varying differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programmes, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex, NuRD. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4-positive cell models indicating that lineage switching in MLL/AF4 leukaemia is driven and maintained by disrupted epigenetic regulation

    The MLL recombinome of acute leukemias in 2017

    Get PDF
    Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients.</p

    The MLL recombinome of acute leukemias in 2017

    Get PDF
    Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and 11 novel TPGs were identified. Thus, a total of 135 different MLL rearrangements have been identified so far, of which 94 TPGs are now characterized at the molecular level. In all, 35 out of these 94 TPGs occur recurrently, but only 9 specific gene fusions account for more than 90% of all illegitimate recombinations of the MLL gene. We observed an age-dependent breakpoint shift with breakpoints localizing within MLL intron 11 associated with acute lymphoblastic leukemia and younger patients, while breakpoints in MLL intron 9 predominate in AML or older patients. The molecular characterization of MLL breakpoints suggests different etiologies in the different age groups and allows the correlation of functional domains of the MLL gene with clinical outcome. This study provides a comprehensive analysis of the MLL recombinome in acute leukemia and demonstrates that the establishment of patient-specific chromosomal fusion sites allows the design of specific PCR primers for minimal residual disease analyses for all patients
    corecore