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Abstract:

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukaemia. Relapse

can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukaemia

resulting in poor clinical outcomes due to resistance towards chemo- and immuno-therapies. Here we

show that the myeloid relapses share oncogene fusion breakpoints with their matched lymphoid

presentations and can originate from varying differentiation stages from immature progenitors

through to committed B-cell precursors. Lineage switching is linked to substantial changes in

chromatin accessibility and rewiring of transcriptional programmes, including alternative splicing.

These findings indicate that the execution and maintenance of lymphoid lineage differentiation is

impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression,

splicing or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the

nucleosome remodelling and deacetylation complex, NuRD. Perturbation of CHD4 alone or in

combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4-

positive cell models indicating that lineage switching in MLL/AF4 leukaemia is driven and

maintained by disrupted epigenetic regulation.
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Keypoints 83 

• Myeloid relapse can originate from varying differentiation stages of MLL/AF4-positive 84 

ALL.  85 

• Dysregulation of epigenetic regulators underpins fundamental lineage 86 

reprogramming. 87 

Abstract 88 

The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic 89 

leukaemia. Relapse can be associated with a lineage switch from acute lymphoblastic to 90 

acute myeloid leukaemia resulting in poor clinical outcomes due to resistance towards 91 

chemo- and immuno-therapies. Here we show that the myeloid relapses share oncogene 92 

fusion breakpoints with their matched lymphoid presentations and can originate from varying 93 

differentiation stages from immature progenitors through to committed B-cell precursors. 94 

Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of 95 

transcriptional programmes, including alternative splicing. These findings indicate that the 96 

execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed 97 

myeloid phenotype is recurrently associated with the altered expression, splicing or mutation 98 

of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome 99 

remodelling and deacetylation complex, NuRD. Perturbation of CHD4 alone or in 100 

combination with other mutated epigenetic modifiers induces myeloid gene expression in 101 

MLL/AF4-positive cell models indicating that lineage switching in MLL/AF4 leukaemia is 102 

driven and maintained by disrupted epigenetic regulation. 103 

 104 

 105 

  106 
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Introduction 107 

Translocation of Mixed Lineage Leukaemia (MLL) with one of over 130 alternative partner 108 

genes is a recurrent cytogenetic finding in both acute myeloid (AML) and lymphoblastic 109 

leukaemias (ALL) and is generally associated with poor prognosis1,2. Amongst the most 110 

common translocations is t(4;11)(q21;q23), forming the MLL/AF4 (also known as 111 

KMT2A/AFF1) fusion gene. Uniquely amongst MLL rearrangements (MLLr), MLL/AF4 is 112 

almost exclusively associated with pro-B cell acute lymphoblastic leukaemia and is 113 

prototypical of infant acute lymphoblastic leukaemia (ALL) where it carries a very poor 114 

prognosis1. However, despite this general lymphoid presentation, MLL/AF4 leukaemias have 115 

an intriguing characteristic - that of lineage switched relapses. Lineage switch acute 116 

leukaemias (LSALs) lose their lymphoid specific features and gain myeloid phenotype upon 117 

relapse3-5. Alternatively, MLL/AF4 leukaemias may harbour distinct lymphoid and myeloid 118 

populations at the same time, thus classifying as mixed phenotype acute leukaemias 119 

(MPALs) of the bilineage subtype6.   120 

Lineage plasticity has been associated with the loss of original therapeutic targets 7,8. In 121 

order to understand the molecular basis of lineage promiscuity and switching, we examined 122 

a unique cohort of MLL/AF4-positive LSAL presentation/relapse pairs and MPALs. We 123 

demonstrate that disruption of the epigenetic machinery, including the nucleosome 124 

remodelling and deacetylation complex (NuRD), is associated with the loss of lymphoid 125 

restriction. Lineage switch is then enacted through redistribution of transcription factor 126 

binding and chromatin reorganisation. These findings provide novel insight into factors which 127 

may prove critical to the effective implementation of lineage specific, epitope-directed 128 

therapies such as chimeric antigen receptor T-cell (CAR-T) cell or bi-specific T-cell engaging 129 

antibody (BiTE) approaches. 130 

  131 
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Methods 132 

Patient samples and data 133 

Patients were diagnosed by local haematology specialists according to contemporary clinical 134 

diagnostic criteria based on morphology and immunophenotypic analysis. All patient 135 

samples were collected at the point of diagnosis, remission following treatment or relapse 136 

and stored with written informed consent for research in one of six centres (Newcastle 137 

Haematology Biobank, Newcastle, UK; University Hospital Schleswig-Holstein, Kiel, 138 

Germany; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, 139 

Oncology and Immunology, Moscow, Russia; Haematological Malignancy Diagnostic 140 

Service, Leeds, UK; Princess Maxima Center for Pediatric Oncology, Utrecht, The 141 

Netherlands; Cincinnati Children's Hospital Medical Center, Cincinnati, USA). Mononuclear 142 

cells were isolated from bone marrow or peripheral blood by density centrifugation followed 143 

by immediate extraction of DNA or RNA, or cryopreservation in the presence of 10% v/v 144 

DMSO.  145 

Samples were requested and used in accordance with the ethical approvals granted to each 146 

of the local/institutional ethical review boards (NRES Committee North East - Newcastle & 147 

North Tyneside 1, UK, reference 07/H0906/109+5; Medical Faculty Christian-Albrechts 148 

University, Kiel, reference A 103/08; Dmitry Rogachev National Medical Research Center, 149 

Moscow, references MB2008: 22.01.2008, MB2015: 22.01.2015, ALL-REZ-2014: 150 

28.01.2014; Haematological Malignancy Research Network, Yorkshire, UK, reference 151 

04/Q1205/69; Haematological Malignancy Diagnostic Service, Leeds, UK, reference 152 

14/WS/0098; Erasmus MC METC, Netherlands, reference MEC-2016-739; IRB of Cincinnati 153 

Children's Hospital, USA, reference 2010-0658) and in accordance with the Declaration of 154 

Helsinki. Each patient/sample was allocated an anonymised reference and no identifiable 155 

information was shared. 156 

Additional methods are described in Supplemental Methods. 157 
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Results 159 

Characterisation of MLL/AF4 acute leukaemias with lineage switch 160 

We focussed on lineage switches which originally presented as ALL and relapsed as AML, 161 

and mixed phenotype acute leukaemias (MPALs) presenting with distinct lymphoid and 162 

myeloid populations. Lymphoid and myeloid phenotypes were defined by morphology and by 163 

expression of either B lymphoid (CD19, CD22, CD79A) or myeloid antigens (CD33, 164 

CD117/KIT, CD64/FCGR1A) (Figure 1A, Table S1). To exclude de novo and therapy-165 

associated AMLs, which are unrelated to the original ALL and do not share the initiating 166 

event, the lymphoid and myeloid presentations and relapses had to display identical 167 

MLL/AF4 breakpoints as genetic proof of relationship (Figures 1B,S1, Table S1). Using 168 

these definitions, we collected a cohort of 12 cases of MLL/AF4 ALL comprising 6 infant, 2 169 

paediatric and 2 adult patients who relapsed with acute myeloid leukaemia (AML), including 170 

one infant patient (LS10) who relapsed following B-lineage directed blinatumomab treatment 171 

and two infant MLL/AF4 mixed phenotype acute leukaemias (MPALs)(Table S1).  172 

Lineage switch leukaemia is associated with transcriptional reprogramming  173 

We hypothesized that lineage switch would be linked with changes in gene expression. 174 

Since the changes in transcriptome composition may include altered regulation of both 175 

transcription and mRNA maturation9, we compared gene expression and splicing between 176 

lymphoid and myeloid populations from lineage switch and MPAL patients. Cluster analysis 177 

of differential gene expression robustly separated both population types (Figure 2A). We 178 

identified 1374 up- (adj. p<0.01, Log Fold change >2) and 1323 down-regulated genes in the 179 

AML lineage switches and the myeloid populations of MPAL patients linked to reduced 180 

lymphoid and increased myeloid gene expression (Figure 2B, Table S2). Changed gene 181 

expression included the loss of lymphoid genes such as PAX5, EBF1, CD19, CD20 (MS4A1) 182 

and CD22, diminished gene expression of immunoglobulin genes and genes involved in the 183 

VDJ recombination (RAG1, RAG2, DNTT), and a gain of myeloid gene including CLEC12A, 184 

PRAM1, CSF3R and members of the CEBP transcription factor family (Figures 185 
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2C,D,S2A,B)10-12. Moreover, almost 30% of direct bona fide target genes of MLL/AF4 186 

including PROM1, encoding the stem cell marker CD133, IKZF2 and HOXA7 showed lower 187 

expression in myeloid cells despite sharing the same MLL/AF4 isotype (Figures S3A-D, 188 

Table S2)13-15. These data show that lineage switch also involves differential MLL/AF4-driven 189 

gene expression. 190 

The analysis of RNA isoform compositions showed that lineage switch is associated with 191 

altered splicing, comprising changes in intron retention and differential usage of exons and 192 

exon-exon linkages (Figure 3A, Tables S3,S4). Interestingly, 85% of all differentially used 193 

exon-exon linkages were non-canonical and mainly consisted of exon skipping and complex 194 

splicing events (Figures 3A,B, Table S4). Pathway analysis revealed an enrichment of 195 

alternatively spliced genes in immune pathways, including antigen processing and 196 

membrane trafficking, suggesting that alternative splicing is linked to the change from a 197 

lymphoid to a myeloid differentiation state (Figure 3C).  198 

Interestingly, lineage switch also affected total expression and the composition of 199 

alternatively spliced fusion transcript isoforms for both MLL/AF4 and AF4/MLL. For instance, 200 

we detected in relapse material from patient LS01 a fusion variant skipping MLL exon 9 201 

(Figure S3E, Table S5). In addition, we also observed changes in transcription and splicing 202 

for genes regulating the chromatin landscape. Several epigenetic regulators, including the 203 

polycomb PRC1 like complex component AUTS2 and the SWI/SNF complex component 204 

BCL7A were down-regulated in myeloid compared to lymphoid cells (Figure 2A). Several 205 

other spliceosome and SWI/SNF members were either differentially expressed or spliced. 206 

Amongst all NuRD complex members, only CHD4 demonstrated differential expression 207 

whilst CHD4, CHD3 and HDAC2 were differentially spliced in AML relapse cells or myeloid 208 

subpopulations of MPALs (Figures 3D,E, Table S4). For instance, CHD4 encoding the 209 

ATPase/helicase subunit of the histone-modifying NuRD complex showed a significantly 210 

lower expression in AML relapses of patients with lineage switch, but was differentially 211 
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spliced in MPAL patients resulting in premature stops or intron retention most likely leading 212 

loss of function isoforms.  213 

Reorganisation of chromatin accessibility and transcription factor binding site 214 

occupancy upon lineage switch 215 

The substantial gene expression changes, including those affecting epigenetic regulators 216 

and lineage-determining transcription factors, prompted us to link transcriptional changes to 217 

altered genome-wide chromatin accessibility. High resolution DNaseI hypersensitive site 218 

(DHS) mapping combined with digital footprinting analysis using the Wellington algorithm16 219 

uncovered multiple differentially accessible genes including the hematopoietic surface 220 

marker genes CD33 and CD19 and transcription factors (Figures 4A-C,S4A,B). These 221 

alterations occurred both at locations distal and proximal to transcriptional start sites (TSS) 222 

indicating the involvement of enhancers and promoters (Figures 4D,S4C). Digital footprinting 223 

is now generally accepted to highlight factors important for regulating specific cell fates17-19. 224 

These analyses showed that changes in chromatin accessibility after lineage switch were 225 

linked to an altered pattern of transcription factor binding site occupancy (Figures 4E,S4D) 226 

with a loss of occupancy of consensus binding sites for lymphoid transcription factors 227 

including EBF or PAX5 and a corresponding increased occupancy of binding motifs for 228 

myeloid factors including C/EBP family members (Figures 4E,F). We also observed a 229 

redistribution of footprinted sites for transcription factors controlling both lymphoid and 230 

myeloid maturation such as RUNX, AP-1 and ETS family members to alternative cognate 231 

motifs (Figures 4E,S4D)20,21. This finding is exemplified by decreased accessibility of a 232 

region located 1 kb upstream of the CD19 TSS with concomitant loss of EBF binding site 233 

occupancy at this element (Figure 4C). In conclusion, the transition from lymphoid to myeloid 234 

immunophenotype is associated with genome-wide alterations in chromatin accessibility and 235 

transcription factor binding site occupancy. 236 
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The mutational landscape of lineage switch 237 

Next, we examined the mutational landscape of lineage switched MLL/AF4 leukaemias by 238 

performing exome sequencing on the entire cohort. In agreement with previously reported 239 

mutation rates in MLL-rearranged leukaemias, presentation ALLs displayed a relatively quiet 240 

mutational landscape with a median of 25 nonsynonymous somatic single nucleotide 241 

variants (SNVs) or insertions/deletions (indels) (Figures S5A,B, Table S6)10,22. Most of them 242 

were sub-clonal with less than 30% of the reads. The group of AML relapses showed on 243 

average 92 SNVs and indels. However, this increase was due to the more heterogeneous 244 

composition of the relapse group: two cases (LS07AML and LS08AML) carried mutated 245 

DNA polymerase genes resulting in increased mutational burden. We observed this 246 

phenotype in only two out of ten relapses, arguing against this phenomenon being a general 247 

requirement for the lineage switch. 248 

In general, we found only a limited overlap between mutations in ALL presentation and AML 249 

relapse (Figures 5A,B, Table S6). While ALL mutations were not associated with genes 250 

belonging to specific functional pathways, AML-specific mutations were associated with the 251 

regulation of transcription and chromatin binding and modification, further emphasising the 252 

notion of transcriptional reprogramming during lineage switch.  Most of the subclonal 253 

mutations identified in presentation samples were subsequently lost at relapse, indicating 254 

alternative subclones as the origin of relapse. This included KRAS and NRAS mutations, 255 

which have previously been shown to confer a worse clinical outcome to infants with an 256 

MLL-rearranged ALL (Figure 5C)23. Also the MPALs harboured many mutations that were 257 

exclusively found in either the lymphoid or myeloid subpopulation indicating the presence of 258 

subclones with a lymphoid and myeloid bias (Figures 5A, B). These combined data show 259 

that lymphoid and myeloid leukaemic phenotypes are associated with distinctive mutation 260 

signatures both in lineage switches and in MPALs.  261 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
h
p
u
b
lic

a
tio

n
s
.o

rg
/b

lo
o
d
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
8
2
/b

lo
o
d
.2

0
2
1
0
1
5
0
3
6
/1

9
0
9
1
0
7
/b

lo
o
d
.2

0
2
1
0
1
5
0
3
6
.p

d
f b

y
 g

u
e
s
t o

n
 2

6
 J

u
ly

 2
0
2
2



Tirtakusuma et al.                                               Lineage switching in MLL/AF4 leukaemias 

12 
 

Perturbation of CHD4 and PHF3 disrupts lymphoid development in MLL/AF4 262 

expressing cells 263 

To identify factors contributing to the lineage plasticity in MLL/AF4-positive leukaemic cells, 264 

we compared all genes demonstrating differential expression, alternative splicing or mutation 265 

in the AML relapse (Figure 6A). This comparison highlighted eight genes common to all 266 

lineage-switched patients. One common gene was CHD4, which codes for the 267 

ATPase/helicase subunit of the Nucleosome Remodelling and Deacetylation complex 268 

(NuRD), a multiprotein transcriptional co-repressor complex with both histone deacetylase 269 

and ATP-dependent chromatin remodelling activity. NuRD is critical for lymphoid lineage 270 

determination by interacting with the transcription factor IKZF124-26. CHD4 shows significantly 271 

lower expression in lineage switched AML when compared to ALL presentation and is 272 

differentially spliced in the MPAL cases (Figure 3E, 6B). Finally, whilst CHD4 mutations have 273 

been reported in <1.5% MLL-germline childhood ALL cases27, as with the R1068H mutation 274 

found in the relapse of patient LS01, these variants commonly affect highly conserved 275 

residues in the helicase/ATPase domains and are predicted to disrupt its activity (Figure 276 

6C,S5C)28-30. In contrast, recurrent mutations in other NuRD complex members have not 277 

been described in ALL and no other NuRD complex member was clonally mutated in our 278 

cohort (Table S6). 279 

We therefore hypothesised that CHD4 was important in maintaining lineage fidelity in 280 

MLL/AF4-positive ALL. To test this idea, we performed knockdown experiments in the 281 

MLL/AF4-expressing and CD33-negative ALL cell line SEM, where we also included ACAP1, 282 

DHX36, NCOA2, PHF3 and PPP1R7 as five additional genes with potentially deleterious 283 

mutations in patient LS01 (Figures S6A). Reverse engineering of a mutual gene network 284 

from 216 ALL and AML gene expression data sets identified CHD4 and PHF3, a co-factor in 285 

RNA Pol II-mediated transcription31, as the most relevant network components of the 286 

mutated genes investigated (PHF3 – 21 edges, p=0.010; CHD4 – 12 edges, p=0.0005) 287 

(Figure S6B, Table S7)32,33.  288 
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Only knockdown of CHD4 and of PHF3 robustly induced expression of the myeloid surface 289 

marker CD33 with a combined knockdown resulting in an even stronger CD33 expression 290 

(Figures S6A,C). Moreover, knockdown of either CHD4 or PHF3 also increased CD33 levels 291 

in RS4;11, another MLL/AF4 ALL cell line, but not in the two MLL-germline ALL cell lines 697 292 

and REH (Figure S6D), indicating that loss of CHD4 or PHF3 may only affect CD33 in the 293 

context of MLL/AF4. Finally, the combined knockdown of CHD4 and PHF3 in PDX from 294 

diagnostic ALL cells significantly increased the fraction of CD33+ cells from 8% to more than 295 

25% (Figure S6E). These combined data suggest that CHD4 and PHF3 restrict MLL/AF4-296 

positive leukaemic cells to a lymphoid phenotype. 297 

In order to examine the role of additional mutations of chromatin modifiers found in our 298 

cohort, we investigated the impact of the PRC1 members PCGF6 and AUTS2, genes with 299 

known roles in B lymphoid malignancy34 and mutated in LS07RAML and LS08RAML (Figure 300 

5A). While knockdown of AUTS2 did not change CD33 levels, depletion of PCGF6 increased 301 

CD33 surface expression in SEM cells, further supporting the notion of epigenetic factors in 302 

regulating lineage determination in ALL (Figure S6F).  303 

In order to establish a direct link between CHD4 / PHF3 binding to the upregulation of 304 

myeloid genes, we investigated the impact of CHD4 or PHF3 perturbation on gene 305 

expression and chromatin organisation by performing RNA-seq, ATAC-seq and ChIP-seq for 306 

CHD4 in SEM cells and the MLL germline cell line 697 (Figures 6D,S7A,B, Table S8). In this 307 

analysis we ranked the ATAC-Seq and ChIP-Seq signals according to their fold-changes 308 

alongside the control patterns, which demonstrated that ATAC-seq analysis of control-309 

treated SEM cells show a very similar pattern to CHD4 binding (Figure 6D) confirming that 310 

this factor is a global regulator of chromatin accessibility. Knockdown of both factors caused 311 

a shift in the overall chromatin accessibility pattern as shown by clustering analysis (Figure 312 

S7A,B bottom panels) suggesting that the after knockdown cells shifted their cistrome and 313 

thus their identity, whereby CHD4 knockdown resulted in a gain of open chromatin sites 314 

(Figure 6D, top panel). The knockdown of PHF3 caused both a loss and a gain of open 315 
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chromatin sites (Figure 6D, bottom panel). GSEA demonstrated a strong correlation of these 316 

gene expression changes in SEM cells after knockdown of CHD4 and PHF3 and lineage 317 

switch cases (Figure S7C,D). However, these changes were particular to MLL/AF4 cells 318 

since in MLL germline 697 cells, CHD4 knockdown-induced changes in chromatin 319 

accessibility were not linked to altered gene expression, and knockdown of PHF3 did not 320 

affect chromatin accessibility (Figure 6D, right panels). 321 

Knockdown of CHD4 or PHF3 in SEM cells changed chromatin structure and reduced 322 

expression of CD79B, RAG2, VPREB1 and CD22, while concomitantly increasing 323 

transcription of CEBPA, LYZ, SIRPA and CD33 (Figures 6E,S8A,B). However, 697 cells 324 

neither showed a change in immunophenotype nor altered expression of these genes 325 

suggesting that CHD4- and PHF3-mediated changes in gene expression correlate with the 326 

presence of an MLL fusion gene.  327 

Given that the relapse-initiating cell may arise within an uncommitted, MLL/AF4 translocated 328 

HSPC population, we assessed the impact of CHD4 and PHF3 function loss in a human 329 

cord blood model, which harbours a chimeric MLL/Af4 fusion35. Knockdown of either CHD4 330 

or PHF3 under lymphoid culture conditions significantly impaired lymphoid differentiation 331 

potential, whilst co-knockdown of CHD4 and PHF3 disrupted differentiation entirely (Figures 332 

6F,G, Table S9). Transcriptomic analysis of the sorted populations revealed that CD33 333 

positive cells exhibited a metagene expression pattern similar to MLLr AML, while the 334 

pattern describing CD19+ cells was most similar to MLLr ALL, confirming that changes in 335 

surface marker expression were associated with the corresponding changes in the 336 

transcriptomic profiles (Figure S6G).  337 

Taken together, our data show the important role of CHD4 and PHF3 in the epigenetic 338 

control of lymphoid lineage maintenance in MLL/AF4-positive leukaemia. In particular, 339 

dysregulation of CHD4/NuRD is mediated by mutation, down-regulation of expression and 340 

differential splicing across the entire cohort. These data support a role for these factors in 341 
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the lineage determining capacity of MLL/AF4, whilst their loss undermines execution and 342 

maintenance of the lymphoid lineage fate. 343 

Clonal evolution of AML relapse 344 

The observed cooperation of CHD4 and PHF3 in the control of lineage determination 345 

predicted that both mutations co-occur in the same cell. Furthermore, since both mutations 346 

might be required for the lineage switch in patient LS01, we hypothesised that they should 347 

be detectable in the most immature populations of this AML sample, for which we had viable 348 

cellular material. We therefore investigated the order of acquisition of these secondary 349 

mutations within the structure of the normal haematopoietic hierarchy. Dissecting the relapse 350 

AML sample using cell sorting, we isolated HSC-, MPP-, LMPP- and GMP-like, as well as 351 

more differentiated populations, followed by targeted deep sequencing examining MLL/AF4 352 

and 12 SNVs including mutated CHD4 and PHF3 that were unique to the relapse sample. 353 

The fusion oncogene was found in the multipotential progenitor population (MPP, 354 

CD34+CD38-CD45RA-CD90-) and in the lymphoid-primed multipotent progenitor-like 355 

population (LMPP, CD34+CD38-CD45RA+; with lymphoid, myeloid, but not megakaryocyte-356 

erythroid potential) (Figures S9A,B; Table S10). When examining the presence of the 12 357 

SNVs across the different populations, only PHF3 and CHD4 mutations were present within 358 

the purified MPP-like fraction with VAF≥0.3 (Figure 7A, Table S10). In contrast, LMPP- and 359 

GMP-like populations contained all 12 SNVs at high VAF. These findings place the CHD4 360 

and PHF3 mutations amongst the earliest genetic events in this patient during the evolution 361 

of lineage-switched relapse. Moreover, they suggest, at least for this patient, an MPP-like or 362 

even more immature cell population as the origin of relapse. 363 

Cellular origin of lineage switched relapse 364 

In order to examine whether lineage-switched relapse regularly arises from lymphoid primed 365 

or even earlier leukaemic populations, we examined whether relapsed AML cells contained 366 

and even shared B-cell receptor (BCR) rearrangements with the preceding ALL. To 367 
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interrogate the developmental stage at which the myeloid relapse arose we analysed (BCR) 368 

rearrangements with RNA-seq and whole exome-seq (WES) derived data36. All ALL cases 369 

showed classical oligoclonal rearrangements of BCR loci, supporting the lymphoid lineage 370 

decision (Figure S9C, Table S11). We observed three distinct patterns for AML relapses 371 

(Figure 7B). Pattern 1 comprises AML cells with no BCR rearrangements implying the 372 

presence of a relapse-initiating cell residing in a primitive precursor population prior to early 373 

DJ recombination. This pattern was seen with patient LS01 and, together with the presence 374 

of CHD4 and PHF3 mutations, strongly supports an MPP-like population as a putative origin 375 

of relapse (Figure 7A). As a second pattern, we found unrelated BCR rearrangements, which 376 

may indicate either aberrant rearrangement in a myeloid cell or relapse initiating from B-377 

lymphoid cell committed to undergo rearrangement, or a transdifferentiated minor ALL clone 378 

with an alternative rearrangement (Figure 7C, cases LS03, LS06, LS07, LS08, MPAL1, 379 

MPAL2). Interestingly, this pattern is found in a relapse after blinatumomab treatment (LS10) 380 

suggesting that immune escape may occur by direct transdifferentiation (Figure 7C). Pattern 381 

3 shows shared BCR rearrangements between diagnostic and relapse material, which 382 

suggests a transdifferentiated myeloid relapse from the major ALL clone (cases LS05 and 383 

LS09). These data demonstrate that AML relapses can originate from different stages of 384 

lymphoid leukaemogenesis. 385 

Discussion 386 

This study describes impaired epigenetic control as being central to the phenomenon of 387 

lymphoid-myeloid lineage switch in MLL/AF4 leukaemia, and demonstrates a heterogeneous 388 

cellular origin of relapse. The comparison of BCR rearrangements between matched ALL 389 

presentation and AML relapse cases demonstrates that whilst relapse can evolve directly 390 

from pro-B-like ALL blast populations, in keeping with the general self-renewal capacity of 391 

ALL cells37, it can alternatively originate within the HSPC compartment. Indeed, the 392 

identification of MLL/AF4-expressing MPP-like cells shows that lineage switched relapse can 393 
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originate from very immature haemopoietic progenitor populations. This finding agrees with 394 

recently published data pointing at MPP cells as the origin of MLL/AF4 leukaemia38 and is in 395 

line with transcriptomic similarities between t(4;11) ALL and Lin-CD34+CD38-CD19- fetal 396 

liver cells, again suggesting an HSPC as the cell of origin23. Furthermore, the identification of 397 

MLL/AF4 within HSPC populations is consistent with the recent identification of an early 398 

lymphoid progenitor, ELP-like signature specifically in MLL-rearranged ALL39. Nevertheless, 399 

and in agreement with previously published findings for MPALs6, the data derived from the 400 

present cohort strongly support a non-lineage committed progenitor compartment as one 401 

source for lineage switched relapse. However, we can not exclude additional cells-of-origin 402 

of MLL/AF4 ALL.   403 

Irrespective of the cellular origin of the relapse, lineage switching is associated with a major 404 

rewiring of gene regulatory networks. At the level of transcriptional control, the decision for 405 

lymphoid development relies not only on the activation of a lymphoid transcriptional program, 406 

but also on the silencing of a default myeloid program40. That decision is enacted by 407 

lymphoid master regulators including EBF1, PAX5 and IKAROS, which represent genes 408 

commonly mutated in precursor B-ALL and do not just upregulate B-cell specific genes, but 409 

also repress the myeloid program40-44. Pax5-/- pro-B cells which lack lymphoid potential, 410 

whilst capable of erythro-myeloid differentiation in vitro, still maintain expression of early B 411 

cell transcription factors EBF1 and E2A (TCF3)40. In contrast, we show that lineage 412 

switching MLL/AF4 pro-B leukaemic relapse is associated with a significant reduction in 413 

expression of these earliest B lymphoid transcription factors, which links to changes in the 414 

MLL/AF4 transcriptional programme, ultimately establishing a myeloid differentiation fate. 415 

Unfortunately, we were not able to directly prove changes in transcription factor binding and 416 

associated changes in histone modifications due to the lack of available primary patient 417 

material. However, high resolution DHS-seq clearly demonstrated changes in chromatin 418 

accessibility and loss of occupation of the corresponding transcription factor binding sites. 419 
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The opposite scenario is observed when myeloid transcription factors are expressed in B-420 

lymphoid cells45. Here, overexpression of C/EBPα efficiently reprograms such cells into 421 

macrophages by suppressing lymphoid genes. CEBPA is strongly upregulated after CHD4 422 

knockdown (Figure 6E) and is likely to be a driving force behind the lineage switch. Taken 423 

together, these published and newly presented data confirm that (i) the balance between 424 

lymphoid and myeloid transcription factors is instructive for lineage choice, and (ii) the down-425 

regulation of the myeloid program is essential for the maintenance of the lymphoid fate. 426 

How can the mutation of global chromatin regulators cause a switch in cell fate? Similar to 427 

the Pax5 knockout, loss of IKAROS DNA-binding activity prevents lymphoid differentiation26. 428 

NuRD co-operates directly with IKAROS to repress HSC self-renewal and myeloid 429 

differentiation, permitting early lymphoid development26,46,47. Lineage switch was either 430 

associated with heterozygous mutation, reduced expression or, in the case of two MPALs, 431 

alternative splicing of CHD4 and other NuRD components. These gene dosage effects are 432 

consistent with reports showing that complete loss of CHD4 impairs normal and leukaemic 433 

proliferation48,49, myeloid and lymphoid differentiation of HSPCs and causes exhaustion of 434 

HSC pools46, indicating that basal CHD4 expression is required for maintaining AML. 435 

Moreover, a partial inhibition of CHD4 supported induction of pluripotency in iPSCs, while a 436 

complete deletion eliminated cell proliferation, demonstrating that lowering CHD4 expression 437 

may facilitate lineage promiscuitiy50. 438 

Recent studies have identified core NuRD and PRC1 complex members as being direct 439 

targets of MLL/AF4 binding51,52. Moreover, NuRD components including CHD4 were shown 440 

to be part of an MLL supercomplex53. We therefore hypothesise that epigenetic regulator 441 

genes are recruited by lineage specific factors during MLL/AF4 leukemogenesis and mediate 442 

fundamental lineage specific decision-making processes, in this case the repression of the 443 

myeloid lineage program. Multiple routes to their dysregulation may result in escape from 444 

this lineage restriction and may be enacted at different stages of haematopoiesis. However, 445 

importantly and in keeping with a previous murine study of lineage conversion following 446 
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CAR-T cell therapy, we did not identify evidence of relapse from a pre-existent myeloid 447 

clone54. 448 

Of substantial clinical importance, lineage switch results in the loss of B cell surface markers 449 

(e.g., CD19), providing an alternative mechanism for relapse following CAR-T cell or 450 

blinatumomab therapy55,56 in addition to mutations, alternative splicing and T cell 451 

trogocytosis57-59. Whilst these therapies target lineage specific surface markers, lineage-452 

switched (pre-)leukaemic progenitor populations escape epitope recognition and provide a 453 

potential clonal source for the relapse60. As recognition of lineage switching following eg 454 

CD19 CAR-T cell therapy grows, two recent studies have highlighted the particular 455 

vulnerability of patients with MLLr ALL54,61,62. Given the increasing use of advanced 456 

immunological therapies, a detailed understanding of the molecular processes underlying 457 

lineage determination and switching will be critical for developing new strategies to avoid this 458 

route to clinical relapse.  Here we highlight an important role of epigenetic regulatory 459 

complexes in the context of MLL/AF4 leukaemia. 460 

  461 
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Figure Legends 692 

Figure 1. Characterisation of MLL/AF4 lineage switch cases. (A) Morphological change 693 

from lymphoblastic leukaemia (left panel) to acute monoblastic/monocytic leukaemia (right 694 

panel) in patient LS01. The scale bar represents 20 μm. (B) Sanger sequencing of MLL/AF4 695 

and reciprocal AF4/MLL fusions in LS01 presentation ALL (upper panel) and relapse AML 696 

(lower panel) identifies a common breakpoint with identical filler sequence in ALL and AML 697 

samples.  698 

Figure 2. Transcriptional reprogramming in lineage switch and MPAL cases.  699 

(A) Heatmap showing the top 100 differentially expressed genes between ALL and AML 700 

from six lineage switch (LS01, LS03, LS04, LS05, LS06, LS10) and two MPAL cases, 701 

ranked by Wald statistics. (B) Enrichment of myeloid growth and differentiation signature in 702 

relapsed samples (left panel) identified by GSEA analyses, also pointing to downregulation 703 

of genes highly correlated with acute lymphoblastic leukemia (middle and right panel). Gene 704 

set enrichment analyses have been performed based on data derived from six lineage 705 

switch samples. FDR – false discovery rate, NES – normalised enrichment score. (C) 706 

Differential expression of lineage specific and (D) immunoglobulin recombination machinery 707 

genes in lineage switch and MPAL cases. Error bars show standard error of the mean (SEM) 708 

for lineage switch cases and ranges for two MPAL cases.  709 

Figure 3. Alternative splicing in lineage switch and MPAL cases. (A) Pie charts showing 710 

the classification of non-differential (non-DEEj) and differential (DEEj) exon-exon junctions. 711 

Shown are the percentages of splicing events assigned to a particular mode of splicing. 712 

Complex splicing event corresponds to several (two or more) alternative splicing incidents 713 

occurring simultaneously in the same sample. (B) Volcano plots demonstrating differential 714 

usage of exon-exon junctions in the transcriptome of AML/myeloid versus ALL/lymphoid 715 

cells of lineage switch (LS01, LS03 & LS04) or MPAL patients. The vertical dashed lines 716 

represent two-fold differences between the AML and ALL cells, and the horizontal dashed 717 

line shows the FDR-adjusted q-value threshold of 0.05 (left panel). Venn diagrams (right 718 
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panel) showing distribution of splice variants identified as significantly changed in AML (or 719 

myeloid fraction of MPAL patients), including exon-exon junctions (DEEj), differential exon 720 

usage (DEU) and retained introns (RI). (C) Enrichment analysis of affected signalling 721 

pathways by the exon-exon junctions (DEEj) and differential exome usage (DEU) in the 722 

LSAL AML relapse and myeloid compartment of MPAL patients. Pathway enrichment 723 

analysis has been performed with https://biit.cs.ut.ee/gprofiler/gost under the highest 724 

significance threshold, with multiple testing correction (g:SCS algorithm). (D) Fold log2 725 

change of total transcript levels among genes affected by alternative splicing (left panel), and 726 

of differentially spliced variants in lineage switched and myeloid compartments of MPAL 727 

patients (right panel). (E) Schematic representation of impact of alternative splicing on 728 

mRNA composition and open reading frames (ORFs) of selected genes. Column graphs on 729 

the right indicate corresponding fold changes of variant expression between AML (or 730 

myeloid) and ALL (or lymphoid) populations in two tested lineage switch patients (LS03 and 731 

LS04) and one MPAL.   732 

Figure 4. Chromatin re-organisation and differential transcription factor binding 733 

underpins lineage switching. (A) DNaseI hypersensitive site sequencing identifies 13,619 734 

sites with a log2 fold reduction and 12,203 sites with a log2 fold increase following lineage 735 

switch to AML. Relative peak heights in the AML sample were plotted against those of the  736 

ALL sample. (B) University of California, Santa Cruz (UCSC) genome browser screenshot 737 

displaying differential expression at lineage specific loci (lower red tracks) accompanied by 738 

altered DNaseI hypersensitivity (upper black tracks) proximal to the transcriptional start site 739 

(TSS) of CD33. (C) UCSC genome browser screenshot for CD19 zoomed in on an ALL-740 

associated DHS with EBF occupation as indicated by high resolution DHS-seq and 741 

Wellington analysis. FP - footprint. (D) Heat maps showing distal DHS regions specific for 742 

AML relapse on a genomic scale. Red and green indicate excess of positive and negative 743 

strand cuts, respectively, per nucleotide position. Sites are sorted from top to bottom in order 744 

of decreasing Footprint Occupancy Score. (E) De novo motif discovery in distal DHSs 745 
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unique to AML relapse as compared to ALL relapse as shown in (D). (F) EBF1 and C/EBP 746 

binding motifs demonstrate differential motif density in presentation ALL and relapse AML.  747 

Figure 5. Molecular characterisation of lineage switch MLL/AF4 leukaemias. (A) Whole 748 

exome sequencing (WES) data showing genes recurrently mutated within the analysed 749 

cohort and genes clonally mutated in relapse cases belonging to the same function protein 750 

complexes (e.g. DNA polymerases, epigenetic complexes, transcriptional regulators). Data 751 

are presented according to the disease timepoint/cell lineage and age of the patient. 752 

Depicted are major single nucleotide variants (SNVs)/indels that were found in >30% of 753 

reads and minor SNVs/indels present in <30% reads. (B) Comparison of total mutation load 754 

(SNVs and indels) identified in patients at presentation (ALL) and relapse (AML) disease 755 

stage or lymphoid and myeloid fraction in MPALs. Listed are common SNVs predicted (by 756 

Condel scoring) to have deleterious effect. (C) Evolution of KRAS/NRAS mutation carrying 757 

cells during lineage switch process. Clonal vs sub-clonal mutations were defined based on 758 

variant allelic frequencies (VAFs) of identified hit at setup cutoff equal to 30%. 759 

Figure 6. Epigenetic modulatory genes influence lineage specific expression profiles. 760 

(A) Intersection between identified hits of clonal mutations (VAF>30%), differentially 761 

expressed genes and alternatively spliced, differentially used exon-exon junctions (adj.p-762 

value<0.01) in lineage switched myeloid relapse/myeloid fraction of MPALs, present in the 763 

analysed cohort. (B)  Fold change in expression of NuRD complex members (CHD4, MTA1, 764 

RBBP4, MBD3) and PHF3 following lineage switched relapse (left panel) and in MPAL cases 765 

(right panel). (C) CHD4 structure; the R1068H mutation (red) is located in the critical 766 

helicase domain of CHD4 at a highly conserved residue. An * (asterisk) indicates positions 767 

which have a single, fully conserved residue, a : (colon) indicates conservation between 768 

groups of strongly similar properties - scoring > 0.5 in the Gonnet PAM 250 matrix, a . 769 

(period) indicates conservation between groups of weakly similar properties - scoring =< 0.5 770 

in the Gonnet PAM 250 matrix. (D) Identification of regions of differential chromatin 771 

accessibility before and after knockdown of CHD4 and PHF3 depicted in red in MLLr SEM 772 
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cells (left panel) and non-MLLr 697 cells (right panel). For all reads the fold change in ATAC-773 

peak height was calculated relative to the control (shNTC) and ATAC-peaks from knock-774 

down cells were plotted according to their fold-change along-side the control signals. CHD4 775 

ChIP density plots from SEM cells (depicted in blue) were plotted alongside the 776 

corresponding DNA regions of the shNTC control. Differentially expressed genes associated 777 

with changing ATAC peaks (log2FC analysed vs shNTC) identified in each cellular variant 778 

are represented by heatmaps included at the right side of each panel (for SEM and 697 779 

cells). (E) UCSC genome browser screenshots representing differential chromatin 780 

accessibility (ATAC-seq) and gene expression level (RNA-seq) in the myeloid CEBPA and 781 

the lymphoid RAG2 loci following CHD4 and PHF3 knockdown in MLLr SEM cells and non-782 

MLLr 697 cells. ChIP-seq traces representing normal CHD4 occupancy in non-MLLr B-ALL 783 

(REH cells), MLLr B-ALL (SEM cells) and MLLr AML cells (MV-4;11) are shown as a 784 

reference at the bottom of each screenshot. TSS – transcriptional start site is depicted for 785 

each gene. (F) Expression of the lineage specific cell surface markers CD19 (lymphoid) and 786 

CD33 (myeloid) following culture of MLL/Af4 transformed hCD34+ cord blood progenitor 787 

cells in lymphoid permissive conditions. Knockdown of PHF3, CHD4 or the combination 788 

disrupts the dominant lymphoid differentiation pattern seen in non-targeting control (shNTC). 789 

(G) PHF3 knockdown is capable of influencing the surface marker expression after longer 790 

incubation period (33 days); CHD4 knockdown impaired cellular survival upon longer in vitro 791 

culture (data not shown).  792 

Figure 7. Haematopoietic stem/progenitor populations carry MLL/AF4. (A) Summary of 793 

MLL/AF4 positivity and 12 SNVs exclusive for the AML relapse, within different  populations 794 

analysed in patient LS01RAML Circles with solid colour indicate VAF >30%, light colour and 795 

dashed line indicates VAF 5-30%. Remaining genes (yellow circle) represent the 10 other 796 

SNVs (out of 12 SNVs) which showed the same pattern in the frequency of mutation 797 

acquisition (described in Table S10). (B) Summary of the proposed model of the origin of 798 

lineage switched relapse. Evaluation of B-cell receptor repertoires on ALL (presentation) and 799 
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AML (relapse) lineage switch, and MPAL cases identified three different patterns. Pattern 1 - 800 

with clonotypes on the ALL only. Pattern 2 - B-cell receptor-containing clones on ALL and 801 

AML, but distinct to each other. Pattern 3 - B-cell receptor-containing clones shared between 802 

ALL and AML. (C) BCR clones frequencies identified in whole-exome seq data with 803 

application of MiXCR software in all analysed LSAL and MPAL patients.  804 
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Figure 5
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Figure 6
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Figure 7 
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