90 research outputs found

    Self-Organized Criticality in a Fibre-Bundle type model

    Full text link
    The dynamics of a fibre-bundle type model with equal load sharing rule is numerically studied. The system, formed by N elements, is driven by a slow increase of the load upon it which is removed in a novel way through internal transfers to the elements broken during avalanches. When an avalanche ends, failed elements are regenerated with strengths taken from a probability distribution. For a large enough N and certain restrictions on the distribution of individual strengths, the system reaches a self-organized critical state where the spectrum of avalanche sizes is a power law with an exponent τ1.5\tau\simeq 1.5.Comment: 10 pages, 6 figures. To be published in Physica

    Flame front propagation V: Stability Analysis of Flame Fronts: Dynamical Systems Approach in the Complex Plane

    Full text link
    We consider flame front propagation in channel geometries. The steady state solution in this problem is space dependent, and therefore the linear stability analysis is described by a partial integro-differential equation with a space dependent coefficient. Accordingly it involves complicated eigenfunctions. We show that the analysis can be performed to required detail using a finite order dynamical system in terms of the dynamics of singularities in the complex plane, yielding detailed understanding of the physics of the eigenfunctions and eigenvalues.Comment: 17 pages 7 figure

    Self-organized criticality and synchronization in a lattice model of integrate-and-fire oscillators

    Full text link
    We introduce two coupled map lattice models with nonconservative interactions and a continuous nonlinear driving. Depending on both the degree of conservation and the convexity of the driving we find different behaviors, ranging from self-organized criticality, in the sense that the distribution of events (avalanches) obeys a power law, to a macroscopic synchronization of the population of oscillators, with avalanches of the size of the system.Comment: 4 pages, Revtex 3.0, 3 PostScript figures available upon request to [email protected]

    Flame front propagation IV: Random Noise and Pole-Dynamics in Unstable Front Propagation II

    Full text link
    The current paper is a corrected version of our previous paper arXiv:adap-org/9608001. Similarly to previous version we investigate the problem of flame propagation. This problem is studied as an example of unstable fronts that wrinkle on many scales. The analytic tool of pole expansion in the complex plane is employed to address the interaction of the unstable growth process with random initial conditions and perturbations. We argue that the effect of random noise is immense and that it can never be neglected in sufficiently large systems. We present simulations that lead to scaling laws for the velocity and acceleration of the front as a function of the system size and the level of noise, and analytic arguments that explain these results in terms of the noisy pole dynamics.This version corrects some very critical errors made in arXiv:adap-org/9608001 and makes more detailed description of excess number of poles in system, number of poles that appear in the system in unit of time, life time of pole. It allows us to understand more correctly dependence of the system parameters on noise than in arXiv:adap-org/9608001Comment: 23 pages, 4 figures,revised, version accepted for publication in journal "Combustion, Explosion and Shock Waves". arXiv admin note: substantial text overlap with arXiv:nlin/0302021, arXiv:adap-org/9608001, arXiv:nlin/030201

    Fingering Instability in Combustion

    Full text link
    A thin solid (e.g., paper), burning against an oxidizing wind, develops a fingering instability with two decoupled length scales. The spacing between fingers is determined by the P\'eclet number (ratio between advection and diffusion). The finger width is determined by the degree two dimensionality. Dense fingers develop by recurrent tip splitting. The effect is observed when vertical mass transport (due to gravity) is suppressed. The experimental results quantitatively verify a model based on diffusion limited transport

    Unified Scaling Law for Earthquakes

    Full text link
    We show that the distribution of waiting times between earthquakes occurring in California obeys a simple unified scaling law valid from tens of seconds to tens of years, see Eq. (1) and Fig. 4. The short time clustering, commonly referred to as aftershocks, is nothing but the short time limit of the general hierarchical properties of earthquakes. There is no unique operational way of distinguishing between main shocks and aftershocks. In the unified law, the Gutenberg-Richter b-value, the exponent -1 of the Omori law for aftershocks, and the fractal dimension d_f of earthquakes appear as critical indices.Comment: 4 pages, 4 figure

    Pulse-coupled relaxation oscillators: from biological synchronization to Self-Organized Criticality

    Full text link
    It is shown that globally-coupled oscillators with pulse interaction can synchronize under broader conditions than widely believed from a theorem of Mirollo \& Strogatz \cite{MirolloII}. This behavior is stable against frozen disorder. Beside the relevance to biology, it is argued that synchronization in relaxation oscillator models is related to Self-Organized Criticality in Stick-Slip-like models.Comment: 4 pages, RevTeX, 1 uuencoded postscript figure in separate file, accepted for publication in Phys. Rev. Lett

    Predictability of Self-Organizing Systems

    Full text link
    We study the predictability of large events in self-organizing systems. We focus on a set of models which have been studied as analogs of earthquake faults and fault systems, and apply methods based on techniques which are of current interest in seismology. In all cases we find detectable correlations between precursory smaller events and the large events we aim to forecast. We compare predictions based on different patterns of precursory events and find that for all of the models a new precursor based on the spatial distribution of activity outperforms more traditional measures based on temporal variations in the local activity.Comment: 15 pages, plain.tex with special macros included, 4 figure

    Symmetries and Fixed Point Stability of Stochastic Differential Equations Modeling Self-Organized Criticality

    Get PDF
    A stochastic nonlinear partial differential equation is built for two different models exhibiting self-organized criticality, the Bak, Tang, and Wiesenfeld (BTW) sandpile model and the Zhang's model. The dynamic renormalization group (DRG) enables to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.Comment: 19 pages, RevTex, includes 6 PostScript figures, Phys. Rev. E (March 97?

    Synchronization in coupled map lattices as an interface depinning

    Full text link
    We study an SOS model whose dynamics is inspired by recent studies of the synchronization transition in coupled map lattices (CML). The synchronization of CML is thus related with a depinning of interface from a binding wall. Critical behaviour of our SOS model depends on a specific form of binding (i.e., transition rates of the dynamics). For an exponentially decaying binding the depinning belongs to the directed percolation universality class. Other types of depinning, including the one with a line of critical points, are observed for a power-law binding.Comment: 4 pages, Phys.Rev.E (in press
    corecore