12,002 research outputs found

    A geometric network model of intrinsic grey-matter connectivity of the human brain

    Get PDF
    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuro- science is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections

    Macroscopic transport by synthetic molecular machines

    Get PDF
    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.

    Renormalization approach for quantum-dot structures under strong alternating fields

    Full text link
    We develop a renormalization method for calculating the electronic structure of single and double quantum dots under intense ac fields. The nanostructures are emulated by lattice models with a clear continuum limit of the effective-mass and single-particle approximations. The coupling to the ac field is treated non-perturbatively by means of the Floquet Hamiltonian. The renormalization approach allows the study of dressed states of the nanoscopic system with realistic geometries as well arbitrary strong ac fields. We give examples of a single quantum dot, emphasizing the analysis of the effective-mass limit for lattice models, and double-dot structures, where we discuss the limit of the well used two-level approximation.Comment: 6 pages, 7 figure

    Evolving antithrombotic treatment patterns for patients with newly diagnosed atrial fibrillation

    Get PDF
    Objective We studied evolving antithrombotic therapy patterns in patients with newly diagnosed non-valvular atrial fibrillation (AF) and ≥1 additional stroke risk factor between 2010 and 2015.Methods 39 670 patients were prospectively enrolled in four sequential cohorts in the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF): cohort C1 (2010–2011), n=5500; C2 (2011–2013), n=11 662; C3 (2013–2014), n=11 462; C4 (2014–2015), n=11 046. Baseline characteristics and antithrombotic therapy initiated at diagnosis were analysed by cohort.Results Baseline characteristics were similar across cohorts. Median CHA2DS2-VASc (cardiac failure, hypertension, age ≥75 (doubled), diabetes, stroke (doubled)-vascular disease, age 65–74 and sex category (female)) score was 3 in all four cohorts. From C1 to C4, the proportion of patients on anticoagulant (AC) therapy increased by almost 15% (C1 57.4%; C4 71.1%). Use of vitamin K antagonist (VKA)±antiplatelet (AP) (C1 53.2%; C4 34.0%) and AP monotherapy (C1 30.2%; C4 16.6%) declined, while use of non-VKA oral ACs (NOACs)±AP increased (C1 4.2%; C4 37.0%). Most CHA2DS2-VASc ≥2 patients received AC, and this proportion increased over time, largely driven by NOAC prescribing. NOACs were more frequently prescribed than VKAs in men, the elderly, patients of Asian ethnicity, those with dementia, or those using non-steroidal anti-inflammatory drugs, and current smokers. VKA use was more common in patients with cardiac, vascular, or renal comorbidities.Conclusions Since NOACs were introduced, there has been an increase in newly diagnosed patients with AF at risk of stroke receiving guideline-recommended therapy, predominantly driven by increased use of NOACs and reduced use of VKA±AP or AP alone.</div

    Cholesterol and the risk of grade-specific prostate cancer incidence: evidence from two large prospective cohort studies with up to 37 years' follow up

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; High cholesterol may be a modifiable risk factor for prostate cancer but results have been inconsistent and subject to potential "reverse causality" where undetected disease modifies cholesterol prior to diagnosis.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt; We conducted a prospective cohort study of 12,926 men who were enrolled in the Midspan studies between 1970 and 1976 and followed up to 31st December 2007. We used Cox-Proportional Hazards Models to evaluate the association between baseline plasma cholesterol and Gleason grade-specific prostate cancer incidence. We excluded cancers detected within at least 5 years of cholesterol assay.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt; 650 men developed prostate cancer in up to 37 years' follow-up. Baseline plasma cholesterol was positively associated with hazard of high grade (Gleason score[greater than or equal to]8) prostate cancer incidence (n=119). The association was greatest among men in the 4th highest quintile for cholesterol, 6.1 to &#60;6.69 mmol/l, Hazard Ratio 2.28, 95% CI 1.27 to 4.10, compared with the baseline of &#60;5.05 mmol/l. This association remained significant after adjustment for body mass index, smoking and socioeconomic status.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Men with higher cholesterol are at greater risk of developing high-grade prostate cancer but not overall risk of prostate cancer. Interventions to minimise metabolic risk factors may have a role in reducing incidence of aggressive prostate cancer

    Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    Get PDF
    The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Surfactant protein D modulates HIV infection of both T-cells and dendritic cells

    Get PDF
    Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    High variability in bodyweight is associated with an increased risk of atrial fibrillation in patients with type 2 diabetes mellitus: a nationwide cohort study

    Get PDF
    Background Bodyweight variability is a risk factor for atrial fibrillation (AF). We aimed to examine the relationship between bodyweight variability and the risk of AF in patients with type 2 diabetes mellitus (DM), and whether this relationship was affected by baseline body mass index (BMI), weight change, or advanced diabetic stage. Methods A nationwide population-based cohort of 670,797 patients with type 2 DM from the Korean National Health Insurance Service database without a history of AF and with ≥ 3 measurements of bodyweight over a 5-year period were followed up for AF development. Intra-individual bodyweight variability was calculated using variability independent of mean, and high bodyweight variability was defined as the quintile with the highest variability with the lower four quintiles as reference. Results During a median of 7.0 years of follow-up, 22,019 patients (3.3%) newly developed AF. After multivariate adjustment, those in the highest quintile of bodyweight variability showed a higher risk of incident AF (HR 1.16, 95% CI 1.12–1.20) compared to those in the lower 4 quintiles with reference bodyweight variability, irrespective of baseline BMI group and direction of overall weight change. This association was greater in magnitude in subjects with lower BMI, those on insulin, and those with a DM duration of greater than 5 years. In sensitivity analyses, high bodyweight variability was consistently associated with AF development using other indices of variability and adjusting for glycemic variability. Conclusions High variability in bodyweight was associated with AF development, independently of traditional cardiovascular risk factors and baseline BMI. This association was stronger in underweight patients and with advanced diabetic stage. Weight fluctuation may interfere with the beneficial effects of weight loss and should be avoided when possible in weight control regimens for DM patients
    corecore