2,814 research outputs found

    On the classification of Kahler-Ricci solitons on Gorenstein del Pezzo surfaces

    Full text link
    We give a classification of all pairs (X,v) of Gorenstein del Pezzo surfaces X and vector fields v which are K-stable in the sense of Berman-Nystrom and therefore are expected to admit a Kahler-Ricci solition. Moreover, we provide some new examples of Fano threefolds admitting a Kahler-Ricci soliton.Comment: 21 pages, ancillary files containing calculations in SageMath; minor correction

    Integration of GRACE and PYTHIA

    Get PDF
    We have successfully developed a technique to integrate an automatic event-generator generation system GRACE and a general-purpose event generator framework PYTHIA. The codes generated by GRACE are embedded in PYTHIA in the created event generator program. The embedded codes give information on parton-level hard interactions directly to PYTHIA. The choice of PDF is controlled by the ordinary parameter setting in PYTHIA. This technique enables us to create easy-to-handle event generators for any processes in hadron collisions. Especially, in virtue of large capability of GRACE, we can easily deal with those processes containing many (four or more) partons in the final state, such as multiple heavy particle productions. This project is being carried out as a collaboration between the Japanese Atlas group and the Minami-Tateya group, aiming at developing event generators for Tevatron and LHC experiments

    Log canonical thresholds of Del Pezzo Surfaces in characteristic p

    Get PDF
    The global log canonical threshold of each non-singular complex del Pezzo surface was computed by Cheltsov. The proof used Koll\'ar-Shokurov's connectedness principle and other results relying on vanishing theorems of Kodaira type, not known to be true in finite characteristic. We compute the global log canonical threshold of non-singular del Pezzo surfaces over an algebraically closed field. We give algebraic proofs of results previously known only in characteristic 00. Instead of using of the connectedness principle we introduce a new technique based on a classification of curves of low degree. As an application we conclude that non-singular del Pezzo surfaces in finite characteristic of degree lower or equal than 44 are K-semistable.Comment: 21 pages. Thorough rewrite following referee's suggestions. To be published in Manuscripta Mathematic

    Fermi-LAT and Suzaku Observations of the Radio Galaxy Centaurus B

    Get PDF
    Centaurus B is a nearby radio galaxy positioned in the Southern hemisphere close to the Galactic plane. Here we present a detailed analysis of about 43 months of accumulated Fermi-LAT data of the gamma-ray counterpart of the source initially reported in the 2nd Fermi-LAT catalog, and of newly acquired Suzaku X-ray data. We confirm its detection at GeV photon energies, and analyze the extension and variability of the gamma-ray source in the LAT dataset, in which it appears as a steady gamma-ray emitter. The X-ray core of Centaurus B is detected as a bright source of a continuum radiation. We do not detect however any diffuse X-ray emission from the known radio lobes, with the provided upper limit only marginally consistent with the previously claimed ASCA flux. Two scenarios that connect the X-ray and gamma-ray properties are considered. In the first one, we assume that the diffuse non-thermal X-ray emission component is not significantly below the derived Suzaku upper limit. In this case, modeling the inverse-Compton emission shows that the observed gamma-ray flux of the source may in principle be produced within the lobes. This association would imply that efficient in-situ acceleration of the radiating electrons is occurring and that the lobes are dominated by the pressure from the relativistic particles. In the second scenario, with the diffuse X-ray emission well below the Suzaku upper limits, the lobes in the system are instead dominated by the magnetic pressure. In this case, the observed gamma-ray flux is not likely to be produced within the lobes, but instead within the nuclear parts of the jet. By means of synchrotron self-Compton modeling we show that this possibility could be consistent with the broad-band data collected for the unresolved core of Centaurus B, including the newly derived Suzaku spectrum.Comment: Accepted for publication in A&A. 11 page

    "Gtool5": a Fortran90 library of input/output interfaces for self-descriptive multi-dimensional numerical data

    Get PDF
    A Fortran90 input/output library, "gtool5", is developed for use with numerical simulation models in the fields of Earth and planetary sciences. The use of this library will simplify implementation of input/output operations into program code in a consolidated form independent of the size and complexity of the software and data. The library also enables simple specification of the metadata needed for post-processing and visualization of the data. These aspects improve the readability of simulation code, which facilitates the simultaneous performance of multiple numerical experiments with different software and efficiency in examining and comparing the numerical results. The library is expected to provide a common software platform to reinforce research on, for instance, the atmosphere and ocean, where a close combination of multiple simulation models with a wide variety of complexity of physics implementations from massive climate models to simple geophysical fluid dynamics models is required

    GR@PPA 2.7 event generator for pppp/ppˉp\bar{p} collisions

    Full text link
    The GR@PPA event generator has been updated to version 2.7. This distribution provides event generators for VV (WW or ZZ) + jets (\leq 4 jets), VVVV + jets (\leq 2 jets) and QCD multi-jet (\leq 4 jets) production processes at pppp and ppˉp\bar{p} collisions, in addition to the four bottom quark productions implemented in our previous work (GR@PPA\_4b). Also included are the top-pair and top-pair + jet production processes, where the correlation between the decay products are fully reproduced at the tree level. Namely, processes up to seven-body productions can be simulated, based on ordinary Feynman diagram calculations at the tree level. In this version, the GR@PPA framework and the process dependent matrix-element routines are separately provided. This makes it easier to add further new processes, and allows users to make a choice of processes to implement. This version also has several new features to handle complicated multi-body production processes. A systematic way to combine many subprocesses to a single base-subprocess has been introduced, and a new method has been adopted to calculate the color factors of complicated QCD processes. They speed up the calculation significantly.Comment: 21 pages, no figur
    corecore