479 research outputs found

    Myogenesis in vitro as Seen with the Scanning Electron Microscope

    Get PDF
    In this paper, we review our recent observations by scanning electron microscopy (SEM) on the differentiation of the cell surface and cytoplasmic organelles in embryonic chick skeletal muscle cells in vitro. The changes of the surface structures of myoblasts during mitosis were essentially similar to those of other cell types, but the characteristic spindle shape of myoblasts did not change throughout most of this period. Cytoskeletal structures under the sarcolemma were examined by Triton extraction and metal coating. Cells in S, G2 and M possessed a dense, and those in G1 a loose filament network under the membrane. Myotubes possessed a dense network under the sarcolemma. In the fusion area between a myoblast and a myotube, the cytoskeletal domain of the former could be distinguished from the latter because of the mosaic appearance of the subsarcolemmal cytoskeletal network. This net-work was composed predominantly of 10-13 nm filaments; they were identified as actin filaments because of their decoration with myosin subfragment-1. Triton treatment and thiocarbohydrazideosmium staining allowed us to visualize myofibrils. They ran in the direction of inferred stress lines brought about by elongation and adhesion of the cells to substrate. Intracellular membranous organelles could be seen by the freeze-polishing and osmium-maceration procedure. Mitochondria exhibited complex irregular branchings. T system tubules ran a tortuous course. Sarcoplasmic reticula with occasional dilatations were connected to each other. The results are of sufficient promise to encourage more extensive analysis of myogenesis by SEM

    Effects of Preservation with Pre-Fermented Green Juice (FGJ) on Fermentation Quality and Energy and Nitrogen Utilization of Round-Baled Alfalfa Silage by Dairy Cattle

    Get PDF
    This study was conducted to examine the effects of pre-fermented green juice (FGJ) of epiphytic lactic acid bacteria (LAB) on the fermentation quality and animal performance of round-baled alfalfa silage (Medicago stativa L.,cv. Dupuits). Ensiling treatments of wilting and FGJ additives (WFGJ) and direct-cut and FGJ additives (DFGJ) improved the fermentation quality of alfalfa silage more than that of wilting (W). Enhanced fermentation in the WFGJ and DFGJ silage was also associated with the increases of energy and nitrogen utilization of the silage by dry Holstein dairy cattle, as fed on diets formulated with alfalfa silage, oat hay, and oat grains

    Sphingosine-1-phosphate attenuates proteoglycan aggrecan expression via production of prostaglandin E(2 )from human articular chondrocytes

    Get PDF
    BACKGROUND: Sphingosine-1-phosphate (S1P), a downstream metabolite of ceramide, induces various bioactivities via two distinct pathways: as an intracellular second messenger or through receptor activation. The receptor for S1P (S1PR) is the family of Endothelial differentiation, sphingolipid G-protein-coupled receptor (EDG). We have here attempted to reveal the expression of EDG/S1PR in human articular chondrocytes (HAC), exploring the implications of S1P in cartilage degradation. METHODS: Articular cartilage specimens were obtained from patients with rheumatoid arthritis (RA), osteoarthritis (OA) or traumatic fracture (representing normal chondrocytes) who underwent joint surgery. Isolated HAC were cultured in vitro by monolayer and stimulated with S1P in the presence or absence of inhibitors of signaling molecules. Stimulated cells and culture supernatants were collected and subjected to analyses using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). RESULTS: All of the tested HAC samples showed positive results in terms of EDG/S1PR expression in basal condition. When HAC was stimulated with S1P, a significant increase in prostaglandin (PG) E(2 )production was observed together with enhanced expression of cyclooxygenase (COX)-2. S1P stimulated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in HAC, and the PGE(2 )induction was abrogated by PD98059 and SB203580. Pertussis toxin inhibited the PGE(2 )induction from HAC by S1P, suggesting an essential role for Gi protein. S1P also attenuated the expression of proteoglycan aggrecan, a component of cartilage matrix, in HAC at transcriptional level. CONCLUSION: It was suggested that the S1P-induced PGE(2 )was at least in part involved in the aggrecan-suppressing effect of S1P, seeing as COX inhibitors attenuated the effect. Accordingly, S1P might play an important role in cartilage degradation in arthritides

    Anti-Tumor Effect against Human Cancer Xenografts by a Fully Human Monoclonal Antibody to a Variant 8-Epitope of CD44R1 Expressed on Cancer Stem Cells

    Get PDF
    BACKGROUND: CD44 is a major cellular receptor for hyaluronic acids. The stem structure of CD44 encoded by ten normal exons can be enlarged by ten variant exons (v1-v10) by alternative splicing. We have succeeded in preparing MV5 fully human IgM and its class-switched GV5 IgG monoclonal antibody (mAb) recognizing the extracellular domain of a CD44R1 isoform that contains the inserted region coded by variant (v8, v9 and v10) exons and is expressed on the surface of various human epithelial cancer cells. METHODS AND PRINCIPAL FINDINGS: We demonstrated the growth inhibition of human cancer xenografts by a GV5 IgG mAb reshaped from an MV5 IgM. The epitope recognized by MV5 and GV5 was identified to a v8-coding region by the analysis of mAb binding to various recombinant CD44 proteins by enzyme-linked immunosorbent assay. GV5 showed preferential reactivity against various malignant human cells versus normal human cells assessed by flow cytometry and immunohistological analysis. When ME180 human uterine cervix carcinoma cells were subcutaneously inoculated to athymic mice with GV5, significant inhibition of tumor formation was observed. Furthermore, intraperitoneal injections of GV5markedly inhibited the growth of visible established tumors from HSC-3 human larynx carcinoma cells that had been subcutaneously transplanted one week before the first treatment with GV5. From in vitro experiments, antibody-dependent cellular cytotoxicity and internalization of CD44R1 seemed to be possible mechanisms for in vivo anti-tumor activity by GV5. CONCLUSIONS: CD44R1 is an excellent molecular target for mAb therapy of cancer, possibly superior to molecules targeted by existing therapeutic mAb, such as Trastuzumab and Cetuximab recognizing human epidermal growth factor receptor family

    Chemoenzymatic Synthesis of Homogeneous Ultralow Molecular Weight Heparins

    Get PDF
    Ultralow molecular weight (ULMW) heparins are sulfated glycans that are clinically used to treat thrombotic disorders. ULMW heparins range from 1500 to 3000 daltons, corresponding from 5 to 10 saccharide units. The commercial drug Arixtra (fondaparinux sodium) is a structurally homogeneous ULMW heparin pentasaccharide that is synthesized through a lengthy chemical process. Here, we report 10- and 12-step chemoenzymatic syntheses of two structurally homogeneous ULMW heparins (MW = 1778.5 and 1816.5) in 45 and 37% overall yield, respectively, starting from a simple disaccharide. These ULMW heparins display excellent in vitro anticoagulant activity and comparable pharmacokinetic properties to Arixtra, as demonstrated in a rabbit model. The chemoenzymatic approach is scalable and shows promise for a more efficient route to synthesize this important class of medicinal agent

    An interaction between Nrf2 polymorphisms and smoking status affects annual decline in FEV1: a longitudinal retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An Nrf2-dependent response is a central protective mechanism against oxidative stress. We propose that particular genetic variants of the <it>Nrf2 </it>gene may be associated with a rapid forced expiratory volume in one second (FEV<sub>1</sub>) decline induced by cigarette smoking.</p> <p>Methods</p> <p>We conducted a retrospective cohort study of 915 Japanese from a general population. Values of annual decline in FEV<sub>1 </sub>were computed for each individual using a linear mixed-effect model. Multiple clinical characteristics were assessed to identify associations with annual FEV<sub>1 </sub>decline. Tag single-nucleotide polymorphisms (SNPs) in the <it>Nrf2 </it>gene (rs2001350, rs6726395, rs1962142, rs2364722) and one functional SNP (rs6721961) in the <it>Nrf2 </it>promoter region were genotyped to assess interactions between the <it>Nrf2 </it>polymorphisms and smoking status on annual FEV<sub>1 </sub>decline.</p> <p>Results</p> <p>Annual FEV<sub>1 </sub>decline was associated with smoking behavior and inversely correlated with FEV<sub>1</sub>/FVC and FEV<sub>1 </sub>% predicted. The mean annual FEV<sub>1 </sub>declines in individuals with rs6726395 G/G, G/A, or A/A were 26.2, 22.3, and 20.8 mL/year, respectively, and differences in these means were statistically significant (p<sub>corr </sub>= 0.016). We also found a significant interaction between rs6726395 genotype and smoking status on the FEV<sub>1 </sub>decline (p for interaction = 0.011). The haplotype rs2001350T/rs6726395A/rs1962142A/rs2364722A/rs6721961T was associated with lower annual decline in FEV<sub>1 </sub>(p = 0.004).</p> <p>Conclusions</p> <p>This study indicated that an Nrf2-dependent response to exogenous stimuli may affect annual FEV<sub>1 </sub>decline in the general population. It appears that the genetic influence of <it>Nrf2 </it>is modified by smoking status, suggesting the presence of a gene-environment interaction in accelerated decline in FEV<sub>1</sub>.</p

    Variants of C-C Motif Chemokine 22 (CCL22) Are Associated with Susceptibility to Atopic Dermatitis: Case-Control Studies

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin disease caused by multiple genetic and environmental factors. AD is characterized by the local infiltration of T helper type 2 (Th2) cells. Recent clinical studies have shown important roles of the Th2 chemokines, CCL22 and CCL17 in the pathogenesis of AD. To investigate whether polymorphisms of the CCL22 gene affect the susceptibility to AD, we conducted association studies and functional studies of the related variants. We first resequenced the CCL22 gene and found a total of 39 SNPs. We selected seven tag SNPs in the CCL22 gene, and conducted association studies using two independent Japanese populations (1st population, 916 cases and 1,032 controls; 2nd population 1,034 cases and 1,004 controls). After the association results were combined by inverse variance method, we observed a significant association at rs4359426 (meta-analysis, combined P = 9.6×10−6; OR, 0.74; 95% CI, 0.65–0.85). Functional analysis revealed that the risk allele of rs4359426 contributed to higher expression levels of CCL22 mRNA. We further examined the allelic differences in the binding of nuclear proteins by electrophoretic mobility shift assay. The signal intensity of the DNA-protein complex derived from the G allele of rs223821, which was in absolute LD with rs4359426, was higher than that from the A allele. Although further functional analyses are needed, it is likely that related variants play a role in susceptibility to AD in a gain-of-function manner. Our findings provide a new insight into the etiology and pathogenesis of AD

    Various Spatiotemporal Expression Profiles of Anther-Expressed Genes in Rice

    Get PDF
    The male gametophyte and tapetum play different roles during anther development although they are differentiated from the same cell lineage, the L2 layer. Until now, it has not been possible to delineate their transcriptomes due to technical difficulties in separating the two cell types. In the present study, we characterized the separated transcriptomes of the rice microspore/pollen and tapetum using laser microdissection (LM)-mediated microarray. Spatiotemporal expression patterns of 28,141 anther-expressed genes were classified into 20 clusters, which contained 3,468 (12.3%) anther-enriched genes. In some clusters, synchronous gene expression in the microspore and tapetum at the same developmental stage was observed as a novel characteristic of the anther transcriptome. Noteworthy expression patterns are discussed in connection with gene ontology (GO) categories and gene annotations, which are related to important biological events in anther development, such as pollen maturation, pollen germination, pollen tube elongation and pollen wall formation
    corecore