79 research outputs found
Deviations from plastic barriers in BiSrCaCuO thin films
Resistive transitions of an epitaxial BiSrCaCuO thin
film were measured in various magnetic fields (), ranging from 0
to 22.0 T. Rounded curvatures of low resistivity tails are observed in
Arrhenius plot and considered to relate to deviations from plastic barriers. In
order to characterize these deviations, an empirical barrier form is developed,
which is found to be in good agreement with experimental data and coincide with
the plastic barrier form in a limited magnetic field range. Using the plastic
barrier predictions and the empirical barrier form, we successfully explain the
observed deviations.Comment: 5 pages, 6 figures; PRB 71, 052502 (2005
AAV-mediated delivery of an anti-BACE1 VHH alleviates pathology in an Alzheimer's disease model
Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood–brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer’s disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer’s mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets
Learning perceptually grounded word meanings from unaligned parallel data
In order for robots to effectively understand natural language commands, they must be able to acquire meaning representations that can be mapped to perceptual features in the external world. Previous approaches to learning these grounded meaning representations require detailed annotations at training time. In this paper, we present an approach to grounded language acquisition which is capable of jointly learning a policy for following natural language commands such as “Pick up the tire pallet,” as well as a mapping between specific phrases in the language and aspects of the external world; for example the mapping between the words “the tire pallet” and a specific object in the environment. Our approach assumes a parametric form for the policy that the robot uses to choose actions in response to a natural language command that factors based on the structure of the language. We use a gradient method to optimize model parameters. Our evaluation demonstrates the effectiveness of the model on a corpus of commands given to a robotic forklift by untrained users.U.S. Army Research Laboratory (Collaborative Technology Alliance Program, Cooperative Agreement W911NF-10-2-0016)United States. Office of Naval Research (MURIs N00014-07-1-0749)United States. Army Research Office (MURI N00014-11-1-0688)United States. Defense Advanced Research Projects Agency (DARPA BOLT program under contract HR0011-11-2-0008
U-Compare bio-event meta-service: compatible BioNLP event extraction services
AbstractBackgroundBio-molecular event extraction from literature is recognized as an important task of bio text mining and, as such, many relevant systems have been developed and made available during the last decade. While such systems provide useful services individually, there is a need for a meta-service to enable comparison and ensemble of such services, offering optimal solutions for various purposes.ResultsWe have integrated nine event extraction systems in the U-Compare framework, making them inter-compatible and interoperable with other U-Compare components. The U-Compare event meta-service provides various meta-level features for comparison and ensemble of multiple event extraction systems. Experimental results show that the performance improvements achieved by the ensemble are significant. ConclusionsWhile individual event extraction systems themselves provide useful features for bio text mining, the U-Compare meta-service is expected to improve the accessibility to the individual systems, and to enable meta-level uses over multiple event extraction systems such as comparison and ensemble.This research was partially supported by KAKENHI 18002007 [YK, MM, JDK, SP, TO, JT]; JST PRESTO and KAKENHI 21500130 [YK]; the Academy of Finland and computational resources were provided by CSC -- IT Center for Science Ltd [JB, FG]; the Research Foundation Flanders (FWO) [SVL]; UK Biotechnology and Biological Sciences, Research Council (BBSRC project BB/G013160/1 Automated Biological Event Extraction from the Literature for Drug Discovery) and JISC, National Centre for Text Mining [SA]; the Spanish grant BIO2010-17527 [MN, APM]; NIH Grant U54 DA021519 [AO, DRR]Peer Reviewe
Benchmarking natural-language parsers for biological applications using dependency graphs
BACKGROUND: Interest is growing in the application of syntactic parsers to natural language processing problems in biology, but assessing their performance is difficult because differences in linguistic convention can falsely appear to be errors. We present a method for evaluating their accuracy using an intermediate representation based on dependency graphs, in which the semantic relationships important in most information extraction tasks are closer to the surface. We also demonstrate how this method can be easily tailored to various application-driven criteria. RESULTS: Using the GENIA corpus as a gold standard, we tested four open-source parsers which have been used in bioinformatics projects. We first present overall performance measures, and test the two leading tools, the Charniak-Lease and Bikel parsers, on subtasks tailored to reflect the requirements of a system for extracting gene expression relationships. These two tools clearly outperform the other parsers in the evaluation, and achieve accuracy levels comparable to or exceeding native dependency parsers on similar tasks in previous biological evaluations. CONCLUSION: Evaluating using dependency graphs allows parsers to be tested easily on criteria chosen according to the semantics of particular biological applications, drawing attention to important mistakes and soaking up many insignificant differences that would otherwise be reported as errors. Generating high-accuracy dependency graphs from the output of phrase-structure parsers also provides access to the more detailed syntax trees that are used in several natural-language processing techniques
Overview of the ID, EPI and REL tasks of BioNLP Shared Task 2011
We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties
- …