227 research outputs found
Anomalous Rabi oscillations in multilevel quantum systems
We show that the excitation probability of a state within a manifold of
levels undergoes Rabi oscillations with frequency determined by the energy
difference between the states and not by the pulse area for sufficiently strong
pulses. The observed dynamics can be used as a procedure for robust state
preparation as an alternative to adiabatic passage and as a useful
spectroscopic method.Comment: 9 pages, 3 figure
Coherent control using adaptive learning algorithms
We have constructed an automated learning apparatus to control quantum
systems. By directing intense shaped ultrafast laser pulses into a variety of
samples and using a measurement of the system as a feedback signal, we are able
to reshape the laser pulses to direct the system into a desired state. The
feedback signal is the input to an adaptive learning algorithm. This algorithm
programs a computer-controlled, acousto-optic modulator pulse shaper. The
learning algorithm generates new shaped laser pulses based on the success of
previous pulses in achieving a predetermined goal.Comment: 19 pages (including 14 figures), REVTeX 3.1, updated conten
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
Anharmonicity, vibrational instability and Boson peak in glasses
We show that a {\em vibrational instability} of the spectrum of weakly
interacting quasi-local harmonic modes creates the maximum in the inelastic
scattering intensity in glasses, the Boson peak. The instability, limited by
anharmonicity, causes a complete reconstruction of the vibrational density of
states (DOS) below some frequency , proportional to the strength of
interaction. The DOS of the new {\em harmonic modes} is independent of the
actual value of the anharmonicity. It is a universal function of frequency
depending on a single parameter -- the Boson peak frequency, which
is a function of interaction strength. The excess of the DOS over the Debye
value is at low frequencies and linear in in the
interval . Our results are in an excellent
agreement with recent experimental studies.Comment: LaTeX, 8 pages, 6 figure
Stochastic Precedence and Minima Among Dependent Variables
The notion of stochastic precedence between two random variables emerges as a relevant concept in several fields of applied probability. When one consider a vector of random variables X1,..,Xn, this notion has a preeminent role in the analysis of minima of the type minj∈AXj for A ⊂{1,…n}. In such an analysis, however, several apparently controversial aspects can arise (among which phenomena of “non-transitivity”). Here we concentrate attention on vectors of non-negative random variables with absolutely continuous joint distributions, in which a case the set of the multivariate conditional hazard rate (m.c.h.r.) functions can be employed as a convenient method to describe different aspects of stochastic dependence. In terms of the m.c.h.r. functions, we first obtain convenient formulas for the probability distributions of the variables minj∈AXj and for the probability of events {Xi=minj∈AXj}. Then we detail several aspects of the notion of stochastic precedence. On these bases, we explain some controversial behavior of such variables and give sufficient conditions under which paradoxical aspects can be excluded. On the purpose of stimulating active interest of readers, we present several comments and pertinent examples
Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data
We present the cosmological parameters constraints obtained from the
combination of galaxy cluster mass function measurements (Vikhlinin et al.,
2009a,b) with new cosmological data obtained during last three years: updated
measurements of cosmic microwave background anisotropy with Wilkinson Microwave
Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South
Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic
oscillations and supernovae Type Ia observations.
New constraints on total neutrino mass and effective number of neutrino
species are obtained. In models with free number of massive neutrinos the
constraints on these parameters are notably less strong, and all considered
cosmological data are consistent with non-zero total neutrino mass \Sigma m_\nu
\approx 0.4 eV and larger than standard effective number of neutrino species,
N_eff \approx 4. These constraints are compared to the results of neutrino
oscillations searches at short baselines.
The updated dark energy equation of state parameters constraints are
presented. We show that taking in account systematic uncertainties, current
cluster mass function data provide similarly powerful constraints on dark
energy equation of state, as compared to the constraints from supernovae Type
Ia observations.Comment: Accepted for publication in Astronomy Letter
Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid
We propose that the boson peak originates from the (quasi-) localized
vibrational modes associated with long-lived locally favored structures, which
are intrinsic to a liquid state and are randomly distributed in a sea of
normal-liquid structures. This tells us that the number density of locally
favored structures is an important physical factor determining the intensity of
the boson peak. In our two-order-parameter model of the liquid-glass
transition, the locally favored structures act as impurities disturbing
crystallization and thus lead to vitrification. This naturally explains the
dependence of the intensity of the boson peak on temperature, pressure, and
fragility, and also the close correlation between the boson peak and the first
sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte
Frequency behavior of Raman coupling coefficient in glasses
Low-frequency Raman coupling coefficient of 11 different glasses is
evaluated. It is found that the coupling coefficient demonstrates a universal
linear frequency behavior near the boson peak maximum and a superlinear
behavior at very low frequencies. The last observation suggests vanishing of
the coupling coefficient when frequency tends to zero. The results are
discussed in terms of the vibration wavefunction that combines features of
localized and extended modes.Comment: 8 pages, 9 figure
A grid-based Ehrenfest model to study electron-nuclear processes
The two-dimensional electron-nuclear Schr\"odinger equation using soft-core
Coulomb potentials has been a cornerstone for modeling and predicting the
behavior of one-active-electron diatomic molecules, particularly for processes
where both bound and continuum states are important. The model, however, is
computationally expensive to extend to more electron or nuclear coordinates.
Here we propose to use the Ehrenfest approach to treat the nuclear motion,
while the electronic motion is still solved by quantum propagation on a grid.
In this work we present results for a one-dimensional treatment of H,
where the quantum and semi-classical dynamics can be directly compared, showing
remarkably good agreement for a variety of situations. The advantage of the
Ehrenfest approach is that it can be easily extended to treat as many nuclear
degrees of freedom as needed
Measurement of Leading Proton and Neutron Production in Deep Inelastic Scattering at HERA
Deep--inelastic scattering events with a leading baryon have been detected by
the H1 experiment at HERA using a forward proton spectrometer and a forward
neutron calorimeter. Semi--inclusive cross sections have been measured in the
kinematic region 2 <= Q^2 <= 50 GeV^2, 6.10^-5 <= x <= 6.10^-3 and baryon p_T
<= MeV, for events with a final state proton with energy 580 <= E' <= 740 GeV,
or a neutron with energy E' >= 160 GeV. The measurements are used to test
production models and factorization hypotheses. A Regge model of leading baryon
production which consists of pion, pomeron and secondary reggeon exchanges
gives an acceptable description of both semi-inclusive cross sections in the
region 0.7 <= E'/E_p <= 0.9, where E_p is the proton beam energy. The leading
neutron data are used to estimate for the first time the structure function of
the pion at small Bjorken--x.Comment: 30 pages, 9 figures, 2 tables, submitted to Eur. Phys.
- …
