3,484 research outputs found

    Opacity in compact extragalactic radio sources and its effect on radio-optical reference frame alignment

    Full text link
    Accurate alignment of the radio and optical celestial reference frames requires detailed understanding of physical factors that may cause offsets between the positions of the same object measured in different spectral bands. Opacity in compact extragalactic jets (due to synchrotron self-absorption and external free-free absorption) is one of the key physical phenomena producing such an offset, and this effect is well-known in radio astronomy ("core shift"). We have measured the core shifts in a sample of 29 bright compact extragalactic radio sources observed using very long baseline interferometry (VLBI) at 2.3 and 8.6 GHz. We report the results of these measurements and estimate that the average shift between radio and optical positions of distant quasars would be of the order of 0.1-0.2 mas. This shift exceeds positional accuracy of GAIA and SIM. We suggest two possible approaches to carefully investigate and correct for this effect in order to align accurately the radio and optical positions. Both approaches involve determining a Primary Reference Sample of objects to be used for tying the radio and optical reference frames together.Comment: 4 pages, 1 figure; to appear in IAU Symposium 248 Proceedings, "A Giant Step: from Milli- to Micro-arcsecond Astrometry", eds. W.-J. Jin, I. Platais, M. Perryma

    Anatomy of helical relativistic jets: The case of S5 0836+710

    Full text link
    Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use VLBI data of the radio-jet in the quasar S5 0836+710 and hypothesize that the ridge-line of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed are physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridge-line can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridge-line observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.Comment: Accepted for publication in the Astrophysical Journa

    Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies

    Full text link
    The apparent position of the "core" in a parsec-scale radio jet (a compact, bright emitting region at the narrow end of the jet) depends on the observing frequency, owing to synchrotron self-absorption and external absorption. While providing a tool probing physical conditions in the vicinity of the core, this dependency poses problems for astrometric studies using compact radio sources. We investigated the frequency-dependent shift in the positions of the cores (core shift) observed with very long baseline interferometry (VLBI) in parsec-scale jets. We discuss related physics, as well as its effect on radio astrometry and the connection between radio and optical positions of astrometric reference objects. We searched for the core shift in a sample of 277 radio sources imaged at 2.3 GHz (13 cm) and 8.6 GHz (4 cm) frequency bands using VLBI observations made in 2002 and 2003. The core shift was measured by referencing the core position to optically thin jet features whose positions are not expected to change with frequency. We present here results for 29 selected active galactic nuclei (AGN) with bright distinct VLBI jet features that can be used in differential measurements and that allow robust measurements of the shift to be made. In these AGN, the magnitude of the measured core shift between 2.3 and 8.6 GHz reaches 1.4 mas, with a median value for the sample of 0.44 mas. Nuclear flares result in temporal variability of the shift. An average shift between the radio (4 cm) and optical (6000 Angstrom) bands is estimated to be approximately 0.1 mas, and it should be taken into account in order to provide the required accuracy of the radio-optical reference frame connection. This can be accomplished with multi-frequency VLBI measurements... (abridged)Comment: 11 pages, 8 figures, 2 tables, accepted for publication in the Astronomy and Astrophysics; minor corrections to the manuscript are mad

    The variability of the Crab Nebula in radio: No radio counterpart to gamma-ray flares

    Full text link
    We present new Jansky Very Large Array (VLA) radio images of the Crab Nebula at 5.5 GHz, taken at two epochs separated by 6 days about two months after a gamma-ray flare in 2012 July. We find no significant change in the Crab's radio emission localized to a region of <2 light-months in radius, either over the 6-day interval between our present observations or between the present observations and ones from 2001. Any radio counterpart to the flare has a radio luminosity of <~ 2×1042 \times 10^{-4} times that of the nebula. Comparing our images to one from 2001, we do however find changes in radio brightness, up to 10% in amplitude, which occur on decade timescales throughout the nebula. The morphology of the changes is complex suggesting both filamentary and knotty structures. The variability is stronger, and the timescales likely somewhat shorter, nearer the centre of the nebula. We further find that even with the excellent uv~coverage and signal-to-noise of the VLA, deconvolution errors are much larger than the noise, being up to 1.2% of peak brightness of the nebula in this particular case.Comment: Accepted to MNRAS; 13 pages, 6 figure

    Multi-frequency investigation of the parsec- and kilo-parsec-scale radio structures in high-redshift quasar PKS 1402+044

    Full text link
    We investigate the frequency-dependent radio properties of the jet of the luminous high-redshift (z = 3.2) radio quasar PKS 1402+044 (J1405+0415) by means of radio interferometric observations. The observational data were obtained with the VLBI Space Observatory Programme (VSOP) at 1.6 and 5 GHz, supplemented by other multi-frequency observations with the Very Long Baseline Array (VLBA; 2.3, 8.4, and 15 GHz) and the Very Large Array (VLA; 1.4, 5, 15, and 43 GHz). The observations span a period of 7 years. We find that the luminous high-redshift quasar PKS 1402+044 has a pronounced "core-jet" morphology from the parsec to the kilo-parsec scales. The jet shows a steeper spectral index and lower brightness temperature with increasing distance from the jet core. The variation of brightness temperature agrees well with the shock-in-jet model. Assuming that the jet is collimated by the ambient magnetic field, we estimate the mass of the central object as ~10^9 M_sun. The upper limit of the jet proper motion of PKS 1402+044 is 0.03 mas/yr (~3c) in the east-west direction.Comment: 9 pages, 6 figures
    corecore