80 research outputs found

    Realization of quantum walks with negligible decoherence in waveguide lattices

    Get PDF
    Quantum random walks are the quantum counterpart of classical random walks, and were recently studied in the context of quantum computation. Physical implementations of quantum walks have only been made in very small scale systems severely limited by decoherence. Here we show that the propagation of photons in waveguide lattices, which have been studied extensively in recent years, are essentially an implementation of quantum walks. Since waveguide lattices are easily constructed at large scales and display negligible decoherence, they can serve as an ideal and versatile experimental playground for the study of quantum walks and quantum algorithms. We experimentally observe quantum walks in large systems (similar to 100 sites) and confirm quantum walks effects which were studied theoretically, including ballistic propagation, disorder, and boundary related effects

    Effect of Nonlinearity on Adiabatic Evolution of Light

    Get PDF
    We investigate the effect of nonlinearity in a system described by an adiabatically evolving Hamiltonian. Experiments are conducted in a three-core waveguide structure that is adiabatically varying with distance, in analogy to the stimulated Raman adiabatic passage process in atomic physics. In the linear regime, the system exhibits an adiabatic power transfer between two waveguides which are not directly coupled, with negligible power recorded in the intermediate coupling waveguide. In the presence of nonlinearity the adiabatic light passage is found to critically depend on the excitation power. We show how this effect is related to the destruction of the dark state formed in this configuration

    Hanbury Brown and Twiss Correlations of Anderson Localized Waves

    Get PDF
    When light waves propagate through disordered photonic lattices, they can eventually become localized due to multiple scattering effects. Here we show experimentally that while the evolution and localization of the photon density distribution is similar in the two cases of diagonal and off-diagonal disorder, the density-density correlation carries a distinct signature of the type of disorder. We show that these differences reflect a symmetry in the spectrum and eigenmodes that exists in off-diagonally disordered lattices but is absent in lattices with diagonal disorder.Comment: 4 pages, 3 figures, comments welcom

    Quantum walks of correlated particles

    Get PDF
    Quantum walks of correlated particles offer the possibility to study large-scale quantum interference, simulate biological, chemical and physical systems, and a route to universal quantum computation. Here we demonstrate quantum walks of two identical photons in an array of 21 continuously evanescently-coupled waveguides in a SiOxNy chip. We observe quantum correlations, violating a classical limit by 76 standard deviations, and find that they depend critically on the input state of the quantum walk. These results open the way to a powerful approach to quantum walks using correlated particles to encode information in an exponentially larger state space

    Quantum and classical correlations in waveguide lattices

    Full text link
    We study quantum and classical Hanbury Brown-Twiss correlations in waveguide lattices. We develop a theory for the propagation of photon pairs in the lattice, predicting the emergence of nontrivial quantum interferences unique to lattice systems. Experimentally, we observe the classical counterpart of these interferences using intensity correlation measurements. We discuss the correspondence between the classical and quantum correlations, and consider path-entangled input states which do not have a classical analogue. Our results demonstrate that waveguide lattices can be used as a robust and highly controllable tool for manipulating quantum states, and offer new ways of studying the quantum properties of light.Comment: Comments are welcom

    Spreading, Nonergodicity, and Selftrapping: a puzzle of interacting disordered lattice waves

    Full text link
    Localization of waves by disorder is a fundamental physical problem encompassing a diverse spectrum of theoretical, experimental and numerical studies in the context of metal-insulator transitions, the quantum Hall effect, light propagation in photonic crystals, and dynamics of ultra-cold atoms in optical arrays, to name just a few examples. Large intensity light can induce nonlinear response, ultracold atomic gases can be tuned into an interacting regime, which leads again to nonlinear wave equations on a mean field level. The interplay between disorder and nonlinearity, their localizing and delocalizing effects is currently an intriguing and challenging issue in the field of lattice waves. In particular it leads to the prediction and observation of two different regimes of destruction of Anderson localization - asymptotic weak chaos, and intermediate strong chaos, separated by a crossover condition on densities. On the other side approximate full quantum interacting many body treatments were recently used to predict and obtain a novel many body localization transition, and two distinct phases - a localization phase, and a delocalization phase, both again separated by some typical density scale. We will discuss selftrapping, nonergodicity and nonGibbsean phases which are typical for such discrete models with particle number conservation and their relation to the above crossover and transition physics. We will also discuss potential connections to quantum many body theories.Comment: 13 pages in Springer International Publishing Switzerland 2016 1 M. Tlidi and M. G. Clerc (eds.), Nonlinear Dynamics: Materials, Theory and Experiment, Springer Proceedings in Physics 173. arXiv admin note: text overlap with arXiv:1405.112

    Localization from quantum interference in one-dimensional disordered potentials

    Full text link
    We show that the tails of the asymptotic density distribution of a quantum wave packet that localizes in the the presence of random or quasiperiodic disorder can be described by the diagonal term of the projection over the eingenstates of the disordered potential. This is equivalent of assuming a phase randomization of the off-diagonal/interference terms. We demonstrate these results through numerical calculations of the dynamics of ultracold atoms in the one-dimensional speckle and quasiperiodic potentials used in the recent experiments that lead to the observation of Anderson localization for matter waves [Billy et al., Nature 453, 891 (2008); Roati et al., Nature 453, 895 (2008)]. For the quasiperiodic case, we also discuss the implications of using continuos or discrete models.Comment: 5 pages, 3 figures; minor changes, references update

    Microscopic observation of magnon bound states and their dynamics

    Get PDF
    More than eighty years ago, H. Bethe pointed out the existence of bound states of elementary spin waves in one-dimensional quantum magnets. To date, identifying signatures of such magnon bound states has remained a subject of intense theoretical research while their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting to reveal such bound states by tracking the spin dynamics after a local quantum quench with single-spin and single-site resolution. Here we report on the direct observation of two-magnon bound states using in-situ correlation measurements in a one-dimensional Heisenberg spin chain realized with ultracold bosonic atoms in an optical lattice. We observe the quantum walk of free and bound magnon states through time-resolved measurements of the two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single magnon excitations. In our measurements, we also determine the decay time of bound magnons, which is most likely limited by scattering on thermal fluctuations in the system. Our results open a new pathway for studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.Comment: 8 pages, 7 figure

    Observation of the gradual transition from one-dimensional to two-dimensional Anderson localization

    Full text link
    We study the gradual transition from one-dimensional to two-dimensional Anderson localization upon transformation of the dimensionality of disordered waveguide arrays. An effective transition from one- to two-dimensional system is achieved by increasing the number of rows forming the arrays. We observe that, for a given disorder level, Anderson localization becomes weaker with increasing number of rows, hence the effective dimension.Comment: 4 pages, 3 figures, to appear in Optics Letter

    Tailoring Anderson localization by disorder correlations in 1D speckle potentials

    Full text link
    We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases
    corecore