522 research outputs found

    Strategic Capacity Planning Problems in Revenue‐Sharing Joint Ventures

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154244/1/poms13128_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154244/2/poms13128.pd

    High-Field ESR Measurements of S=1/2 Kagome Lattice Antiferromagnet BaCu3_3V2_2O8_8(OH)2_2

    Full text link
    High-field electron spin resonance (ESR) measurements have been performed on vesignieite BaCu3_3V2_2O8_8(OH)2_2, which is considered as a nearly ideal model substance of SS=1/2 kagome antiferromagnet, in the temperature region from 1.9 to 265 K. The frequency region is from 60 to 360 GHz and the applied pulsed magnetic field is up to 16 T. Observed g-value and linewidth show the increase below 20 K, which suggest the development of the short range order. Moreover, a gapless spin liquid ground state is suggested from the frequency-field relation at 1.9 K.Comment: 5 pages, 6 figures, jpsj2 class file, to be published in J. Phys. Soc. Jp

    Scaling and the Metal-Insulator Transition in Si/SiGe Quantum Wells

    Full text link
    The existence of a metal-insulator transition at zero magnetic field in two- dimensional electron systems has recently been confirmed in high mobility Si-MOSFETs. In this work, the temperature dependence of the resistivity of gated Si/SiGe/Si quantum well structures has revealed a similar metal- insulator transition as a function of carrier density at zero magnetic field. We also report evidence for a Coulomb gap in the temperature dependence of the resistivity of the dilute 2D hole gas confined in a SiGe quantum well. In addition, the resistivity in the insulating phase scales with a single parameter, and is sample independent. These results are consistent with the occurrence of a metal-insulator transition at zero magnetic field in SiGe square quantum wells driven by strong hole-hole interactions.Comment: 3 pages, 3 figures, LaTe

    Stress-driven instability in growing multilayer films

    Full text link
    We investigate the stress-driven morphological instability of epitaxially growing multilayer films, which are coherent and dislocation-free. We construct a direct elastic analysis, from which we determine the elastic state of the system recursively in terms of that of the old states of the buried layers. In turn, we use the result for the elastic state to derive the morphological evolution equation of surface profile to first order of perturbations, with the solution explicitly expressed by the growth conditions and material parameters of all the deposited layers. We apply these results to two kinds of multilayer structures. One is the alternating tensile/compressive multilayer structure, for which we determine the effective stability properties, including the effect of varying surface mobility in different layers, its interplay with the global misfit of the multilayer film, and the influence of asymmetric structure of compressive and tensile layers on the system stability. The nature of the asymmetry properties found in stability diagrams is in agreement with experimental observations. The other multilayer structure that we study is one composed of stacked strained/spacer layers. We also calculate the kinetic critical thickness for the onset of morphological instability and obtain its reduction and saturation as number of deposited layers increases, which is consistent with recent experimental results. Compared to the single-layer film growth, the behavior of kinetic critical thickness shows deviations for upper strained layers.Comment: 27 pages, 11 figures; Phys. Rev. B, in pres

    GRISOTTO: A greedy approach to improve combinatorial algorithms for motif discovery with prior knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Position-specific priors (PSP) have been used with success to boost EM and Gibbs sampler-based motif discovery algorithms. PSP information has been computed from different sources, including orthologous conservation, DNA duplex stability, and nucleosome positioning. The use of prior information has not yet been used in the context of combinatorial algorithms. Moreover, priors have been used only independently, and the gain of combining priors from different sources has not yet been studied.</p> <p>Results</p> <p>We extend RISOTTO, a combinatorial algorithm for motif discovery, by post-processing its output with a greedy procedure that uses prior information. PSP's from different sources are combined into a scoring criterion that guides the greedy search procedure. The resulting method, called GRISOTTO, was evaluated over 156 yeast TF ChIP-chip sequence-sets commonly used to benchmark prior-based motif discovery algorithms. Results show that GRISOTTO is at least as accurate as other twelve state-of-the-art approaches for the same task, even without combining priors. Furthermore, by considering combined priors, GRISOTTO is considerably more accurate than the state-of-the-art approaches for the same task. We also show that PSP's improve GRISOTTO ability to retrieve motifs from mouse ChiP-seq data, indicating that the proposed algorithm can be applied to data from a different technology and for a higher eukaryote.</p> <p>Conclusions</p> <p>The conclusions of this work are twofold. First, post-processing the output of combinatorial algorithms by incorporating prior information leads to a very efficient and effective motif discovery method. Second, combining priors from different sources is even more beneficial than considering them separately.</p

    Vertical integration, market foreclosure and quality investment

    Get PDF
    We study incentives to vertically integrate in an industry with verti- cally differentiated downstream firms. Vertical integration by one of the firms increases production costs for the rival. Increased production costs negatively affects quality investment both by the integrated firm and the unintegrated rival. Quality investment by both firms decreases under any (vertical inte- gration) scenario. The decrease in quality invesment by both firms softens competition among downstream firms. By integrating first, a firm always produces the high quality good and earns higher profits. A fully integrated industry, with increased product differentiation, is observed in equilibrium. Due to increase in firm profits, social welfare under this structure is greater than under no integration.info:eu-repo/semantics/publishedVersio

    Relationship between Magnetic Structure and Ferroelectricity of LiVCuO4

    Full text link
    Neutron scattering studies and measurements of the dielectric susceptibility and ferroelectric polarization P have been carried out in various magnetic fields H for single-crystal samples of the multiferroic system LiVCuO4 with quasi one-dimensional spin 1/2 Cu2+ chains formed of edge-sharing CuO4 square planes, and the relationship between the magnetic structure and ferroelectricity has been studied. The ferroelectric polarization is significantly suppressed by the magnetic field H above 2 T applied along a and b axes. The helical magnetic structure with the helical axis parallel to c has been confirmed in H=0, and for H//a, the spin flop transition takes place at H=2 T with increasing H, where the helical axis changes to the direction parallel to H. The ferroelectric polarization along a at H=0 is found to be proportional to the neutron magnetic scattering intensity, indicating that the magnetic order is closely related to the appearance of the ferroelectricity. The relationship between the magnetic structure and ferroelectricity of LiVCuO4 is discussed by considering the existing theories.Comment: 4 pages (5 figures), submitted to J. Phys. Soc. Jp

    Modeling DNA Structure, Elasticity and Deformations at the Base-pair Level

    Full text link
    We present a generic model for DNA at the base-pair level. We use a variant of the Gay-Berne potential to represent the stacking energy between neighboring base-pairs. The sugar-phosphate backbones are taken into account by semi-rigid harmonic springs with a non-zero spring length. The competition of these two interactions and the introduction of a simple geometrical constraint leads to a stacked right-handed B-DNA-like conformation. The mapping of the presented model to the Marko-Siggia and the Stack-of-Plates model enables us to optimize the free model parameters so as to reproduce the experimentally known observables such as persistence lengths, mean and mean squared base-pair step parameters. For the optimized model parameters we measured the critical force where the transition from B- to S-DNA occurs to be approximately 140pN140{pN}. We observe an overstretched S-DNA conformation with highly inclined bases that partially preserves the stacking of successive base-pairs.Comment: 15 pages, 25 figures. submitted to PR
    • 

    corecore