138 research outputs found

    O vrstama zmija u gorju Zapadni Taurus, Turska

    Get PDF
    A total of 85 specimens belonging to 14 snake species collected from the Western Taurus Mountain Range were examined in this study. Along with morphological information about the species, the study contains some topographical observations concerning the localities. The collection of material from a number of new localities helped efforts to complete missing information related to the distribution of species in this region. Moreover, the data obtained were compared with those contained in the relevant literature with the purpose of shedding light on the taxonomical status of the species.Obrađeno je ukupno 85 primjeraka odnosno 14 vrsta zmija prikupljenih u gorju Zapadni Taurus. Rad donosi morfoloĆĄke osobitosti vrsta te neka topografska opaĆŸanja lokaliteta. Prikupljeni materijal pomogao je upotpuniti nedostatke u poznavanju rasprostranjenja vrsta koje ĆŸive u ovoj regiji. Prikupljeni podaci uspoređeni su s relevantnom literaturom u svrhu produbljivanja znanja o taksonomiji vrsta

    Sweet cherry cultivar identification by using SSR markers

    Get PDF
    In this study, sweet cherry varieties and types grown in Turkey were described using SSR markers. This study was undertaken to develop DNA marker profiles that could be used to distinguish among the sweet cherry cultivars used in production in Turkey. For microsatellite analysis, 13SSR primers isolated from sweet cherry (P. avium L.) sour cherry (P. cerasus L.) and peach (P. persica L. Batsch) were used on sweet cherry cultivars and types. Two primer pairs did not give amplification with genotypes analyzed. Two-primer pairs amplified monomorphic fragment for the sweet cherry varieties therefore they were uninformative for the sweet cherry genetic analysis. Genetic similarities were calculated and a dendrogram has been established. All of the 8 SSR primers used and cherries have produced amplified bands. For each primer the alleles obtained has been between 1 and 6, in total 38 alleles have found. Through these analyses the similarities between these varieties have been converted into numerical values. This happens to be the first study kind towards the molecular identification of sweet cherry genetic resources in Turke

    Mediterranean sea turtles: Current knowledge and priorities for conservation and research

    Get PDF
    This is the final version. Available on open access from Inter Research via the DOI in this recordThe available information regarding the 2 sea turtle species breeding in the Mediterranean (loggerhead turtle Caretta caretta and green turtle Chelonia mydas) is reviewed, including biometrics and morphology, identification of breeding and foraging areas, ecology and behaviour, abundance and trends, population structure and dynamics, anthropogenic threats and conservation measures. Although a large body of knowledge has been generated, research efforts have been inconsistently allocated across geographic areas, species and topics. Significant gaps still exist, ranging from the most fundamental aspects, such as the distribution of major nesting sites and the total number of clutches laid annually in the region, to more specific topics like age at maturity, survival rates and behavioural ecology, especially for certain areas (e.g. south-eastern Mediterranean). These gaps are particularly marked for the green turtle. The recent positive trends of nest counts at some nesting sites may be the result of the cessation of past exploitation and decades of conservation measures on land, both in the form of national regulations and of continued active protection of clutches. Therefore, the current status should be considered as dependent on such ongoing conservation efforts. Mitigation of incidental catch in fisheries, the main anthropogenic threat at sea, is still in its infancy. From the analysis of the present status a comprehensive list of re search and conservation priorities is proposed.C.C. is supported by the project CTM2013-48163 of the Spanish Ministry of Economy and Competitivity. The Cyprus Wildlife Society (CWS) acknowledges the financial support of the Department of Fisheries and Marine Research of the Government to the CWS for the implementation of the Turtle Conservation Project in the period 2010−2016 and for all its assistance to the Society in previous years. J.T. is supported by project Prometeo II (2015-018) of the Generalitat Valenciana and projects MEDSEALITTER-INTERREG and INDICIT of the European Union

    Monitoring and conservation of Loggerhead Turtle's nests on Fethiye Beaches, Turkey

    Get PDF
    Fethiye beaches are the one of the most important sea turtle nesting beaches from Turkey. The reproductive biology of nesting loggerhead turtles was investigated there during three consecutive nesting seasons (2011-2013). A total of 253 nests were recorded in three seasons, and these nests included an average 80.4 eggs per nests. The incubation periods have decreased considerably over the last decade, potentially pointing to a climate change effect. The nest density was 7.2 nests/km in 2011, 10.7 nests/km in 2012 and 12.6 nests/km in 2013. Despite this 3-year increase, the overall number of nests over the last two decades shows a gradual decline, although the pattern differs from beach to beach. It was determined that the habitat loss and tourism activities are the main problems and are effect breeding activities of the species. In this respect, site-specific conservation actions were started at the Fethiye beaches. ©Biharean Biologist, 2016

    Recoilless Resonant Absorption of Monochromatic Neutrino Beam for Measuring Delta m^2_{31} and theta_{13}

    Full text link
    We discuss, in the context of precision measurement of Delta m^2_{31} and theta_{13}, physics capabilities enabled by the recoilless resonant absorption of monochromatic antineutrino beam enhanced by the M\"ossbauer effect recently proposed by Raghavan. Under the assumption of small relative systematic error of a few tenth of percent level between measurement at different detector locations, we give analytical and numerical estimates of the sensitivities to Delta m^2_{31} and sin^2 2theta_{13}. The accuracies of determination of them are enormous; The fractional uncertainty in Delta m^2_{31} achievable by 10 point measurement is 0.6% (2.4%) for sin^2 2theta_{13} = 0.05, and the uncertainty of sin^2 2theta_{13} is 0.002 (0.008) both at 1 sigma CL with the optimistic (pessimistic) assumption of systematic error of 0.2% (1%). The former opens a new possibility of determining the neutrino mass hierarchy by comparing the measured value of Delta m^2_{31} with the one by accelerator experiments, while the latter will help resolving the theta_{23} octant degeneracy.Comment: 23 pages, 3 figures, version to appear in New Journal of Physic

    Green turtles (Chelonia mydas) foraging at Arvoredo Island in Southern Brazil: Genetic characterization and mixed stock analysis through mtDNA control region haplotypes

    Get PDF
    We analyzed mtDNA control region sequences of green turtles (Chelonia mydas) from Arvoredo Island, a foraging ground in southern Brazil, and identified eight haplotypes. Of these, CM-A8 (64%) and CM-A5 (22%) were dominant, the remainder presenting low frequencies (< 5%). Haplotype (h) and nucleotide (π) diversities were 0.5570 ± 0.0697 and 0.0021 ± 0.0016, respectively. Exact tests of differentiation and AMOVA ΊST pairwise values between the study area and eight other Atlantic foraging grounds revealed significant differences in most areas, except Ubatuba and Rocas/Noronha, in Brazil (p > 0.05). Mixed Stock Analysis, incorporating eleven Atlantic and one Mediterranean rookery as possible sources of individuals, indicated Ascension and Aves islands as the main contributing stocks to the Arvoredo aggregation (68.01% and 22.96%, respectively). These results demonstrate the extensive relationships between Arvoredo Island and other Atlantic foraging and breeding areas. Such an understanding provides a framework for establishing adequate management and conservation strategies for this endangered species

    Are anthropogenic factors affecting nesting habitat of sea turtles? The case of Kanzul beach, Riviera Maya-Tulum (Mexico)

    Get PDF
    Marine coast modification and human pressure affects many species, including sea turtles. In order to study nine anthropogenic impacts that might affect nesting selection of females, incubation and hatching survival of loggerhead (Caretta caretta) and green turtle (Chelonia mydas), building structures were identified along a 5.2 km beach in Kanzul (Mexico). A high number of hotels and houses (88; 818 rooms), with an average density of 16.6 buildings per kilometer were found. These buildings form a barrier which prevents reaching the beach from inland, resulting in habitat fragmentation. Main pressures were detected during nesting selection (14.19% of turtle nesting attempts interrupted), and low impact were found during incubation (0.77%) and hatching (4.7%). There were three impacts defined as high: beach furniture that blocks out the movement of hatchlings or females, direct pressure by tourists, and artificial beachfront lighting that can potentially mislead hatchlings or females. High impacted areas showed lowest values in nesting selection and hatching success. Based on our results, we suggest management strategies to need to be implemented to reduce human pressure and to avoid nesting habitat loss of loggerhead and green turtle in Kanzul, Mexico

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The data that support the findings of this study are available in the Supplementary Material of this article and Zenodo (https://doi.org/10.5281/zenodo.5898578). Details for all animals included in this study are provided in Appendices S1 and S2. Data used to create the spatial networks are listed in the Appendices S3 and S4. The geospatial files for all networks are available on the Migratory Connectivity in the Ocean Project website (https://mico.eco) and Dryad (https://doi.org/10.5061/dryad.j3tx95xg9). Additional data that support the findings of this study are available from the corresponding author upon reasonable request.Aim Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location Global. Methods We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.International Climate Initiative (IKI)German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU

    Are we working towards global research priorities for management and conservation of sea turtles?

    Get PDF
    In 2010, an international group of 35 sea turtle researchers refined an initial list of more than 200 research questions into 20 metaquestions that were considered key for management and conservation of sea turtles. These were classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies. To obtain a picture of how research is being focused towards these key questions, we undertook a systematic review of the peer-reviewed literature (2014 and 2015) attributing papers to the original 20 questions. In total, we reviewed 605 articles in full and from these 355 (59%) were judged to substantively address the 20 key questions, with others focusing on basic science and monitoring. Progress to answering the 20 questions was not uniform, and there were biases regarding focal turtle species, geographic scope and publication outlet. Whilst it offers some meaningful indications as to effort, quantifying peer-reviewed literature output is ob viously not the only, and possibly not the best, metric for understanding progress towards informing key conservation and management goals. Along with the literature review, an international group based on the original project consortium was assigned to critically summarise recent progress towards answering each of the 20 questions. We found that significant research is being expended towards global priorities for management and conservation of sea turtles. Although highly variable, there has been significant progress in all the key questions identified in 2010. Undertaking this critical review has highlighted that it may be timely to undertake one or more new prioritizing exercises. For this to have maximal benefit we make a range of recommendations for its execution. These include a far greater engagement with social sciences, widening the pool of contributors and focussing the questions, perhaps disaggregating ecology and conservatio

    Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization

    Get PDF
    Aim: Understanding the spatial ecology of animal movements is a critical element in conserving long-lived, highly mobile marine species. Analyzing networks developed from movements of six sea turtle species reveals marine connectivity and can help prioritize conservation efforts. Location: Global. Methods: We collated telemetry data from 1235 individuals and reviewed the literature to determine our dataset's representativeness. We used the telemetry data to develop spatial networks at different scales to examine areas, connections, and their geographic arrangement. We used graph theory metrics to compare networks across regions and species and to identify the role of important areas and connections. Results: Relevant literature and citations for data used in this study had very little overlap. Network analysis showed that sampling effort influenced network structure, and the arrangement of areas and connections for most networks was complex. However, important areas and connections identified by graph theory metrics can be different than areas of high data density. For the global network, marine regions in the Mediterranean had high closeness, while links with high betweenness among marine regions in the South Atlantic were critical for maintaining connectivity. Comparisons among species-specific networks showed that functional connectivity was related to movement ecology, resulting in networks composed of different areas and links. Main conclusions: Network analysis identified the structure and functional connectivity of the sea turtles in our sample at multiple scales. These network characteristics could help guide the coordination of management strategies for wide-ranging animals throughout their geographic extent. Most networks had complex structures that can contribute to greater robustness but may be more difficult to manage changes when compared to simpler forms. Area-based conservation measures would benefit sea turtle populations when directed toward areas with high closeness dominating network function. Promoting seascape connectivity of links with high betweenness would decrease network vulnerability.Fil: Kot, Connie Y.. University of Duke; Estados UnidosFil: Åkesson, Susanne. Lund University; SueciaFil: Alfaro Shigueto, Joanna. Universidad Cientifica del Sur; PerĂș. University of Exeter; Reino Unido. Pro Delphinus; PerĂșFil: Amorocho Llanos, Diego Fernando. Research Center for Environmental Management and Development; ColombiaFil: Antonopoulou, Marina. Emirates Wildlife Society-world Wide Fund For Nature; Emiratos Arabes UnidosFil: Balazs, George H.. Noaa Fisheries Service; Estados UnidosFil: Baverstock, Warren R.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Blumenthal, Janice M.. Cayman Islands Government; Islas CaimĂĄnFil: Broderick, Annette C.. University of Exeter; Reino UnidoFil: Bruno, Ignacio. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Canbolat, Ali Fuat. Hacettepe Üniversitesi; TurquĂ­a. Ecological Research Society; TurquĂ­aFil: Casale, Paolo. UniversitĂ  degli Studi di Pisa; ItaliaFil: Cejudo, Daniel. Universidad de Las Palmas de Gran Canaria; EspañaFil: Coyne, Michael S.. Seaturtle.org; Estados UnidosFil: Curtice, Corrie. University of Duke; Estados UnidosFil: DeLand, Sarah. University of Duke; Estados UnidosFil: DiMatteo, Andrew. CheloniData; Estados UnidosFil: Dodge, Kara. New England Aquarium; Estados UnidosFil: Dunn, Daniel C.. University of Queensland; Australia. The University of Queensland; Australia. University of Duke; Estados UnidosFil: Esteban, Nicole. Swansea University; Reino UnidoFil: Formia, Angela. Wildlife Conservation Society; Estados UnidosFil: Fuentes, Mariana M. P. B.. Florida State University; Estados UnidosFil: Fujioka, Ei. University of Duke; Estados UnidosFil: Garnier, Julie. The Zoological Society of London; Reino UnidoFil: Godfrey, Matthew H.. North Carolina Wildlife Resources Commission; Estados UnidosFil: Godley, Brendan J.. University of Exeter; Reino UnidoFil: GonzĂĄlez Carman, Victoria. Instituto National de InvestigaciĂłn y Desarrollo Pesquero; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Harrison, Autumn Lynn. Smithsonian Institution; Estados UnidosFil: Hart, Catherine E.. Grupo Tortuguero de las Californias A.C; MĂ©xico. Investigacion, Capacitacion y Soluciones Ambientales y Sociales A.C; MĂ©xicoFil: Hawkes, Lucy A.. University of Exeter; Reino UnidoFil: Hays, Graeme C.. Deakin University; AustraliaFil: Hill, Nicholas. The Zoological Society of London; Reino UnidoFil: Hochscheid, Sandra. Stazione Zoologica Anton Dohrn; ItaliaFil: Kaska, Yakup. Dekamer—Sea Turtle Rescue Center; TurquĂ­a. Pamukkale Üniversitesi; TurquĂ­aFil: Levy, Yaniv. University Of Haifa; Israel. Israel Nature And Parks Authority; IsraelFil: Ley Quiñónez, CĂ©sar P.. Instituto PolitĂ©cnico Nacional; MĂ©xicoFil: Lockhart, Gwen G.. Virginia Aquarium Marine Science Foundation; Estados Unidos. Naval Facilities Engineering Command; Estados UnidosFil: LĂłpez-Mendilaharsu, Milagros. Projeto TAMAR; BrasilFil: Luschi, Paolo. UniversitĂ  degli Studi di Pisa; ItaliaFil: Mangel, Jeffrey C.. University of Exeter; Reino Unido. Pro Delphinus; PerĂșFil: Margaritoulis, Dimitris. Archelon; GreciaFil: Maxwell, Sara M.. University of Washington; Estados UnidosFil: McClellan, Catherine M.. University of Duke; Estados UnidosFil: Metcalfe, Kristian. University of Exeter; Reino UnidoFil: Mingozzi, Antonio. UniversitĂ  Della Calabria; ItaliaFil: Moncada, Felix G.. Centro de Investigaciones Pesqueras; CubaFil: Nichols, Wallace J.. California Academy Of Sciences; Estados Unidos. Center For The Blue Economy And International Environmental Policy Program; Estados UnidosFil: Parker, Denise M.. Noaa Fisheries Service; Estados UnidosFil: Patel, Samir H.. Coonamessett Farm Foundation; Estados Unidos. Drexel University; Estados UnidosFil: Pilcher, Nicolas J.. Marine Research Foundation; MalasiaFil: Poulin, Sarah. University of Duke; Estados UnidosFil: Read, Andrew J.. Duke University Marine Laboratory; Estados UnidosFil: Rees, ALan F.. University of Exeter; Reino Unido. Archelon; GreciaFil: Robinson, David P.. The Aquarium and Dubai Turtle Rehabilitation Project; Emiratos Arabes UnidosFil: Robinson, Nathan J.. FundaciĂłn OceanogrĂ fic; EspañaFil: Sandoval-Lugo, Alejandra G.. Instituto PolitĂ©cnico Nacional; MĂ©xicoFil: Schofield, Gail. Queen Mary University of London; Reino UnidoFil: Seminoff, Jeffrey A.. Noaa National Marine Fisheries Service Southwest Regional Office; Estados UnidosFil: Seney, Erin E.. University Of Central Florida; Estados UnidosFil: Snape, Robin T. E.. University of Exeter; Reino UnidoFil: Sözbilen, Dogan. Dekamer—sea Turtle Rescue Center; TurquĂ­a. Pamukkale University; TurquĂ­aFil: TomĂĄs, JesĂșs. Institut Cavanilles de Biodiversitat I Biologia Evolutiva; EspañaFil: Varo Cruz, Nuria. Universidad de Las Palmas de Gran Canaria; España. Ads Biodiversidad; España. Instituto Canario de Ciencias Marinas; EspañaFil: Wallace, Bryan P.. University of Duke; Estados Unidos. Ecolibrium, Inc.; Estados UnidosFil: Wildermann, Natalie E.. Texas A&M University; Estados UnidosFil: Witt, Matthew J.. University of Exeter; Reino UnidoFil: Zavala Norzagaray, Alan A.. Instituto politecnico nacional; MĂ©xicoFil: Halpin, Patrick N.. University of Duke; Estados Unido
    • 

    corecore