258 research outputs found

    Structure and superconducting properties of ((Ln(1-x)Ln*(x) 1/2 (Ba(1-y)Sr(y) 1/3 Ce 1/6) 8Cu6O(z)

    Get PDF
    A variety of new oxide superconductors were prepared. The crystallographic structures of the oxides were all tetragonal and of the (Ln(+), Ce)4(Ln(+),Ba)4Cu6Oz (Ln(+) = Nd, Sm or Eu) type which had been previously discovered by Akimitsu et al. As the Sr content, y, increased when Ln = Ln(excited state) = Nd, the oxygen content, z, monotonically increased and the superconducting transition temperature, T(sub c), varied exhibiting a maximum. When z was controlled directly by means of high oxygen pressure sintering techniques, T(sub c) was changed accordingly. T(sub c's) of samples with different combinations of Ln and Ln(excited state) and different values of x and y were found to depend on the magnitude of the bond valence sum for a Cu atom located in the bottom plane of the Cu-O5 pyramid. Transport and magnetization measurements were carried out to investigate the magnetic field dependence of superconducting properties and to determine the phenomenological parameters. The Hall coefficients were positive below room temperature and varied yielding a maximum with respect to temperature

    A Novel IFITM5 Variant Associated with Phenotype of Osteoporosis with Calvarial Doughnut Lesions: A Case Report

    Get PDF
    cited By 0Osteogenesis imperfecta (OI) and other decreased bone density disorders comprise a heterogeneous group of heritable diseases with skeletal fragility. Recently, it was discovered that mutations in SGMS2, encoding sphingomyelin synthetase 2, result in aberrant sphingomyelin metabolism and lead to a novel form of OI termed osteoporosis with calvarial doughnut lesions (OP-CDL) with moderate to severe skeletal fragility and variable cranial hyperostotic lesions. This study describes a Japanese family with the skeletal phenotype of OP-CDL. The affected individuals have moderately severe, childhood-onset skeletal fragility with multiple long-bone fractures, scoliosis and bone deformities. In addition, they exhibit multiple CDLs or calvarial bumps with central radiolucency and peripheral radiopacity. However, SGMS2 sequencing was normal. Instead, whole-exome sequencing identified a novel IFITM5 missense mutation c.143A>G (p.N48S) (classified as a VUS by ACMG). IFITM5 encodes an osteoblast-restricted protein BRIL and a recurrent c.-14C>T mutation in its 5' UTR region results in OI type V, a distinctive subtype of OI associated with hyperplastic callus formation and ossification of the interosseous membranes. The patients described here have a phenotype clearly different from OI type V and with hyperostotic cranial lesions, feature previously unreported in association with IFITM5. Our findings expand the genetic spectrum of OP-CDL, indicate diverse phenotypic consequences of pathogenic IFITM5 variants, and imply an important role for BRIL in cranial skeletogenesis.Peer reviewe

    Analysis of charge transfer mechanism on (Ba1-xNdxCuO2+d)2/(CaCuO2)n superconducting superlattices by thermoelectric power measurements

    Full text link
    We have investigated the charge transfer mechanism in artificial superlattices by Seebeck effect measurements. Such a technique allows a precise determination of the amount of charge transferred on each CuO2 plane. A systematic characterization of thermoelectric power in (BaCuO2+d)2/(CaCuO2)n and (Ba0.9Nd0.1CuO2+d)2/(CaCuO2)n superlattices demonstrates that electrical charge distributes uniformly among the CuO2 planes in the Ca-block. The differences observed in the Seebeck effect behavior between the Nd-doped and undoped superlattices are ascribed to the different metallic character of the Ba-block in the two cases. Finally, the special role of structural disorder in superlattices with n=1 is pointed out by such analysis.Comment: subitted to PRB, 15 pages, 3 figure

    Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins.

    Get PDF
    The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13(G64D), in which Gly at amino acid position 64 is replaced by Asp, and ZIP13(ΔFLA), which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13(G64D) and ZIP13(ΔFLA) protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS
    • 

    corecore