464 research outputs found
High performance Beowulf computer for lattice QCD
We describe the construction of a high performance parallel computer composed
of PC components, as well as the performance test in lattice QCD.Comment: Lattice 2001 (Algorithms and Machines) 3 page
Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets
Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently
discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between
the magnon and phonon dispersions. However, this effect was observed at low
temperatures and high magnetic fields, limiting the scope for applications.
Here we report observation of phonon-resonant enhancement of SSE at room
temperature and low magnetic field. We observed in Lu2BiFe4GaO12 and
enhancement 700 % greater than that in a YIG film and at very low magnetic
fields around 10-1 T, almost one order of magnitude lower than that of YIG. The
result can be explained by the change in the magnon dispersion induced by
magnetic compensation due to the presence of non-magnetic ion substitutions.
Our study provides a way to tune the magnon response in a crystal by chemical
doping with potential applications for spintronic devices.Comment: 17 pages, 4 figure
Systematic study of autocorrelation time in pure SU(3) lattice gauge theory
Results of our autocorrelation measurement performed on Fujitsu AP1000 are
reported. We analyze (i) typical autocorrelation time, (ii) optimal mixing
ratio between overrelaxation and pseudo-heatbath and (iii) critical behavior of
autocorrelation time around cross-over region with high statistic in wide range
of for pure SU(3) lattice gauge theory on , and
lattices. For the mixing ratio K, small value (3-7) looks optimal in the
confined region, and reduces the integrated autocorrelation time by a factor
2-4 compared to the pseudo-heatbath. On the other hand in the deconfined phase,
correlation times are short, and overrelaxation does not seem to matter For a
fixed value of K(=9 in this paper), the dynamical exponent of overrelaxation is
consistent with 2 Autocorrelation measurement of the topological charge on
lattice at = 6.0 is also briefly mentioned.Comment: 3 pages of A4 format including 7-figure
Autocorrelation in Updating Pure SU(3) Lattice Gauge Theory by the use of Overrelaxed Algorithms
We measure the sweep-to-sweep autocorrelations of blocked loops below and
above the deconfinement transition for SU(3) on a lattice using
20000-140000 Monte-Carlo updating sweeps. A divergence of the autocorrelation
time toward the critical is seen at high blocking levels. The peak is
near = 6.33 where we observe 440 210 for the autocorrelation time
of Wilson loop on blocked lattice. The mixing of 7 Brown-Woch
overrelaxation steps followed by one pseudo-heat-bath step appears optimal to
reduce the autocorrelation time below the critical . Above the critical
, however, no clear difference between these two algorithms can be seen
and the system decorrelates rather fast.Comment: 4 pages of A4 format including 6-figure
Full order alpha electroweak corrections to double Higgs-strahlung at the linear collider
We present the full order alpha electroweak radiative corrections to the
double Higgs-strahlung process e+e- --> ZHH. The computation is performed with
the help of GRACE-loop. After subtraction of the initial state QED radiative
corrections, we find that the genuine weak corrections in the -scheme
are small for Higgs masses and energies where this cross section is largest and
is most likely to be studied. These corrections decrease with increasing
energies attaining about at TeV. The full order alpha
correction on the other hand is quite large at threshold but small at energies
around the peak. We also study changes in the shape of the invariant mass of
the Higgs pair which has been shown to be a good discriminating variable for
the measurement of the triple Higgs vertex in this reaction.Comment: 18 pages, 5 figures and 3 table
Finite Temperature Gauge Theory on Anisotropic Lattices
The finite temperature transition of QCD can be seen as a change in the
structure of the hadrons and as a symmetry breaking transition -- a change in
the structure of the vacuum. These phenomena are observed differently and carry
complementary information. We aim at a correlated analysis involving hadronic
correlators and the vacuum structure including field and density correlations,
both non-trivial questions.Comment: 3 pages, Talk presented at LATTICE96(finite temperature
Near-Infrared Coronagraphic Observations of the T Tauri Binary System UY Aur
We present a near-infrared image of UY Aur, a 0.9" separated binary system,
using the Coronagraphic Imager with Adaptive Optics on the Subaru Telescope.
Thanks to adaptive optics, the spatial resolution of our image was ~0.1" in the
full width at half maximum of the point spread function, the highest achieved.
By comparison with previous measurements, we estimated that the orbital period
is ~1640 yrs and the total mass of the binary is ~1.73 solar mass. The observed
H-band magnitude of the secondary varies by as much as 1.3 mag within a decade,
while that of the primary is rather stable. This inconstancy may arise from
photospheric variability caused by an uneven accretion rate or from the
rotation of the secondary. We detected a half-ring shaped circumbinary disk
around the binary with a bright southwest part but a barely detectable
northeast portion. The brightness ratio is ~57. Its inner radius and
inclination are about 520 AU and 42, respectively. The disk is not uniform but
has remarkable features, including a clumpy structure along the disk,
circumstellar material inside the inner cavity, and an extended armlike
structure. The circumstellar material inside the cavity probably corresponds to
a clump or material accreting from the disk onto the binary. The armlike
structure is a part of the disk, created by the accretion from the outer region
of the disk or encounters with other stellar systems.Comment: 16 pages, 6 figures; accepted for publication in A
Effects of Chemical Potential on Hadron Masses in the Phase Transition Region
We study the response of hadron masses with respect to chemical potential at
. Our preliminary results of the pion channel show that in the confinement phase is significantly larger than that in
the deconfinement phase, which is consistent with the chiral restoration.Comment: LATTICE99 (finite temperature and density), 3 pages, 3 figure
QED Corrections to the Scattering of Solar Neutrinos and Electrons
We discuss recent calculations of the O(alpha) QED corrections to the recoil
electron energy spectrum in neutrino electron scattering, and to the spectrum
of the combined energy of the recoil electron and a possible accompanying
photon emitted in the scattering process. We then examine the role of these
corrections in the interpretation of precise measurements from solar neutrino
electron scattering experiments.Comment: (16 Pages, 4 Figures) Presented at the Symposium in Honor of
Professor Alberto Sirlin's 70th Birthday: ``50 Years of Precision Electroweak
Physics'', New York University, October 27-28, 200
- …
