464 research outputs found

    High performance Beowulf computer for lattice QCD

    Get PDF
    We describe the construction of a high performance parallel computer composed of PC components, as well as the performance test in lattice QCD.Comment: Lattice 2001 (Algorithms and Machines) 3 page

    Room temperature and low-field resonant enhancement of spin Seebeck effect in partially compensated magnets

    Full text link
    Resonant enhancement of spin Seebeck effect (SSE) due to phonons was recently discovered in Y3Fe5O12 (YIG). This effect is explained by hybridization between the magnon and phonon dispersions. However, this effect was observed at low temperatures and high magnetic fields, limiting the scope for applications. Here we report observation of phonon-resonant enhancement of SSE at room temperature and low magnetic field. We observed in Lu2BiFe4GaO12 and enhancement 700 % greater than that in a YIG film and at very low magnetic fields around 10-1 T, almost one order of magnitude lower than that of YIG. The result can be explained by the change in the magnon dispersion induced by magnetic compensation due to the presence of non-magnetic ion substitutions. Our study provides a way to tune the magnon response in a crystal by chemical doping with potential applications for spintronic devices.Comment: 17 pages, 4 figure

    Systematic study of autocorrelation time in pure SU(3) lattice gauge theory

    Full text link
    Results of our autocorrelation measurement performed on Fujitsu AP1000 are reported. We analyze (i) typical autocorrelation time, (ii) optimal mixing ratio between overrelaxation and pseudo-heatbath and (iii) critical behavior of autocorrelation time around cross-over region with high statistic in wide range of β\beta for pure SU(3) lattice gauge theory on 848^4, 16416^4 and 32432^4 lattices. For the mixing ratio K, small value (3-7) looks optimal in the confined region, and reduces the integrated autocorrelation time by a factor 2-4 compared to the pseudo-heatbath. On the other hand in the deconfined phase, correlation times are short, and overrelaxation does not seem to matter For a fixed value of K(=9 in this paper), the dynamical exponent of overrelaxation is consistent with 2 Autocorrelation measurement of the topological charge on 323×6432^3 \times 64 lattice at β\beta = 6.0 is also briefly mentioned.Comment: 3 pages of A4 format including 7-figure

    Autocorrelation in Updating Pure SU(3) Lattice Gauge Theory by the use of Overrelaxed Algorithms

    Full text link
    We measure the sweep-to-sweep autocorrelations of blocked loops below and above the deconfinement transition for SU(3) on a 16416^4 lattice using 20000-140000 Monte-Carlo updating sweeps. A divergence of the autocorrelation time toward the critical β\beta is seen at high blocking levels. The peak is near β\beta = 6.33 where we observe 440 ±\pm 210 for the autocorrelation time of 1×11\times 1 Wilson loop on 242^4 blocked lattice. The mixing of 7 Brown-Woch overrelaxation steps followed by one pseudo-heat-bath step appears optimal to reduce the autocorrelation time below the critical β\beta. Above the critical β\beta, however, no clear difference between these two algorithms can be seen and the system decorrelates rather fast.Comment: 4 pages of A4 format including 6-figure

    Full order alpha electroweak corrections to double Higgs-strahlung at the linear collider

    Full text link
    We present the full order alpha electroweak radiative corrections to the double Higgs-strahlung process e+e- --> ZHH. The computation is performed with the help of GRACE-loop. After subtraction of the initial state QED radiative corrections, we find that the genuine weak corrections in the α\alpha-scheme are small for Higgs masses and energies where this cross section is largest and is most likely to be studied. These corrections decrease with increasing energies attaining about 10\sim -10% at s=1.5\sqrt{s}=1.5TeV. The full order alpha correction on the other hand is quite large at threshold but small at energies around the peak. We also study changes in the shape of the invariant mass of the Higgs pair which has been shown to be a good discriminating variable for the measurement of the triple Higgs vertex in this reaction.Comment: 18 pages, 5 figures and 3 table

    Finite Temperature Gauge Theory on Anisotropic Lattices

    Get PDF
    The finite temperature transition of QCD can be seen as a change in the structure of the hadrons and as a symmetry breaking transition -- a change in the structure of the vacuum. These phenomena are observed differently and carry complementary information. We aim at a correlated analysis involving hadronic correlators and the vacuum structure including field and density correlations, both non-trivial questions.Comment: 3 pages, Talk presented at LATTICE96(finite temperature

    Near-Infrared Coronagraphic Observations of the T Tauri Binary System UY Aur

    Get PDF
    We present a near-infrared image of UY Aur, a 0.9" separated binary system, using the Coronagraphic Imager with Adaptive Optics on the Subaru Telescope. Thanks to adaptive optics, the spatial resolution of our image was ~0.1" in the full width at half maximum of the point spread function, the highest achieved. By comparison with previous measurements, we estimated that the orbital period is ~1640 yrs and the total mass of the binary is ~1.73 solar mass. The observed H-band magnitude of the secondary varies by as much as 1.3 mag within a decade, while that of the primary is rather stable. This inconstancy may arise from photospheric variability caused by an uneven accretion rate or from the rotation of the secondary. We detected a half-ring shaped circumbinary disk around the binary with a bright southwest part but a barely detectable northeast portion. The brightness ratio is ~57. Its inner radius and inclination are about 520 AU and 42, respectively. The disk is not uniform but has remarkable features, including a clumpy structure along the disk, circumstellar material inside the inner cavity, and an extended armlike structure. The circumstellar material inside the cavity probably corresponds to a clump or material accreting from the disk onto the binary. The armlike structure is a part of the disk, created by the accretion from the outer region of the disk or encounters with other stellar systems.Comment: 16 pages, 6 figures; accepted for publication in A

    Effects of Chemical Potential on Hadron Masses in the Phase Transition Region

    Get PDF
    We study the response of hadron masses with respect to chemical potential at μ=0\mu=0. Our preliminary results of the pion channel show that m/μ\partial m/\partial \mu in the confinement phase is significantly larger than that in the deconfinement phase, which is consistent with the chiral restoration.Comment: LATTICE99 (finite temperature and density), 3 pages, 3 figure

    QED Corrections to the Scattering of Solar Neutrinos and Electrons

    Full text link
    We discuss recent calculations of the O(alpha) QED corrections to the recoil electron energy spectrum in neutrino electron scattering, and to the spectrum of the combined energy of the recoil electron and a possible accompanying photon emitted in the scattering process. We then examine the role of these corrections in the interpretation of precise measurements from solar neutrino electron scattering experiments.Comment: (16 Pages, 4 Figures) Presented at the Symposium in Honor of Professor Alberto Sirlin's 70th Birthday: ``50 Years of Precision Electroweak Physics'', New York University, October 27-28, 200
    corecore