158 research outputs found

    The decrease of the critical current of coated conductors when a perpendicular magnetic field is applied : a Josephson effect point of view

    Get PDF
    A large decrease is observed in the critical current density of YBCO coated conductors (CC) and related compounds when a strong perpendicular magnetic field is applied. While measurements are generally carried out at 77K only, here we present a magnetic technique permitting to determine the critical current per unit width of conductor (Icr/w) in a large temperature range. We report measurements carried out on various CCs that show that, in addition to the reduction in the critical temperature that can be attributed to the low value of the irreversibility field near Tc, the field application results in a large decrease of Icr/w at all temperatures. We ascribe this reduction to the Josephson behaviour of the twin boundaries included in the YBCO layer

    Cosmological forecasts with the clustering of weak lensing peaks

    Get PDF
    Large scale structure and cosmolog

    A gravitational lensing detection of filamentary structures connecting luminous red galaxies

    Get PDF
    We present a weak lensing detection of filamentary structures in the cosmic web, combining data from the Kilo-Degree Survey, the Red Cluster Sequence Lensing Survey, and the Canada-France-Hawaii Telescope Lensing Survey. The line connecting luminous red galaxies with a separation of 3 − 5 h−1 Mpc was chosen as a proxy for the location of filaments. We measured the average weak lensing shear around ∼11 000 candidate filaments selected in this way from the Sloan Digital Sky Survey. After nulling the shear induced by the dark matter haloes around each galaxy, we reported a 3.4σ detection of an anisotropic shear signal from the matter that connects them. Adopting a filament density profile, motivated from N-body simulations, the average density at the centre of these filamentary structures was found to be 15 ± 4 times the critical density

    Cosmological simulations for combined-probe analyses: covariance and neighbour-exclusion bias

    Get PDF
    We present a public suite of weak-lensing mock data, extending the Scinet Light Cone Simulations (SLICS) to simulate cross-correlation analyses with different cosmological probes. These mocks include Kilo Degree Survey (KiDS)-450- and LSST-like lensing data, cosmic microwave background lensing maps and simulated spectroscopic surveys that emulate the Galaxy And Mass Assembly, BOSS, and 2-degree Field Lensing galaxy surveys. With 844 independent realizations, our mocks are optimized for combined-probe covariance estimation, which we illustrate for the case of a joint measurement involving cosmic shear, galaxy–galaxy lensing, and galaxy clustering from KiDS-450 and BOSS data. With their high spatial resolution, the SLICS are also optimal for predicting the signal for novel lensing estimators, for the validation of analysis pipelines, and for testing a range of systematic effects such as the impact of neighbour-exclusion bias on the measured tomographic cosmic shear signal. For surveys like KiDS and Dark Energy Survey, where the rejection of neighbouring galaxies occurs within ∼2 arcsec, we show that the measured cosmic shear signal will be biased low, but by less than a per cent on the angular scales that are typically used in cosmic shear analyses. The amplitude of the neighbour-exclusion bias doubles in deeper, LSST-like data. The simulation products described in this paper are made available at http://slics.roe.ac.uk/

    Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey

    Get PDF
    We study projected underdensities in the cosmic galaxy density field known as ‘troughs’, and their overdense counterparts, which we call ‘ridges’. We identify these regions using a bright sample of foreground galaxies from the photometric Kilo-Degree Survey (KiDS), specifically selected to mimic the spectroscopic Galaxy And Mass Assembly survey. Using background galaxies from KiDS, we measure the weak gravitational lensing profiles of the troughs/ridges. We quantify the amplitude of their lensing strength A as a function of galaxy density percentile rank P and galaxy overdensity δ, and find that the skewness in the galaxy density distribution is reflected in the total mass distribution measured by weak lensing. We interpret our results using the mock galaxy catalogue from the Marenostrum Institut de Ciències de l’Espai (MICE) simulation, and find a good agreement with our observations. Using signal-to-noise weights derived from the Scinet LIghtCone Simulations (SLICS) mock catalogue we optimally stack the lensing signal of KiDS troughs with an angular radius θA={5,10,15,20}arcmin⁠, resulting in {16.8,14.9,10.13,7.55}σ detections. Finally, we select troughs using a volume-limited sample of galaxies, split into two redshift bins between 0.1 < z < 0.3. For troughs/ridges with transverse comoving radius RA=1.9h−170Mpc⁠, we find no significant difference in the comoving excess surface density as a function of P and δ between the low- and high-redshift sample. Using the MICE and SLICS mocks we predict that trough and ridge evolution could be detected with gravitational lensing using deeper and wider lensing surveys, such as those from the Large Synoptic Survey Telescope and Euclid

    CFHTLenS: mapping the large-scale structure with gravitational lensing

    Get PDF
    We present a quantitative analysis of the largest contiguous maps of projected mass density obtained from gravitational lensing shear. We use data from the 154 deg^2 covered by the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). Our study is the first attempt to quantitatively characterize the scientific value of lensing maps, which could serve in the future as a complementary approach to the study of the dark universe with gravitational lensing. We show that mass maps contain unique cosmological information beyond that of traditional two-point statistical analysis techniques. Using a series of numerical simulations, we first show how, reproducing the CFHTLenS observing conditions, gravitational lensing inversion provides a reliable estimate of the projected matter distribution of large-scale structure. We validate our analysis by quantifying the robustness of the maps with various statistical estimators. We then apply the same process to the CFHTLenS data. We find that the two-point correlation function of the projected mass is consistent with the cosmological analysis performed on the shear correlation function discussed in the CFHTLenS companion papers. The maps also lead to a significant measurement of the third-order moment of the projected mass, which is in agreement with analytic predictions, and to a marginal detection of the fourth-order moment. Tests for residual systematics are found to be consistent with zero for the statistical estimators we used. A new approach for the comparison of the reconstructed mass map to that predicted from the galaxy distribution reveals the existence of giant voids in the dark matter maps as large as 3° on the sky. Our analysis shows that lensing mass maps are not only consistent with the results obtained by the traditional shear approach, but they also appear promising for new techniques such as peak statistics and the morphological analysis of the projected dark matter distribution

    CFHTLenS: cosmological constraints from a combination of cosmic shear two-point and three-point correlations

    Get PDF
    Higher order, non-Gaussian aspects of the large-scale structure carry valuable information on structure formation and cosmology, which is complementary to second-order statistics. In this work, we measure second- and third-order weak-lensing aperture-mass moments from the Canada–France–Hawaii Lensing Survey (CFHTLenS) and combine those with cosmic microwave background (CMB) anisotropy probes. The third moment is measured with a significance of 2σ. The combined constraint on Σ8 = σ8(Ωm/0.27)α is improved by 10 per cent, in comparison to the second-order only, and the allowed ranges for Ωm and σ8 are substantially reduced. Including general triangles of the lensing bispectrum yields tighter constraints compared to probing mainly equilateral triangles. Second- and third-order CFHTLenS lensing measurements improve Planck CMB constraints on Ωm and σ8 by 26 per cent for flat Λ cold dark matter. For a model with free curvature, the joint CFHTLenS–Planck result is Ωm = 0.28 ± 0.02 (68 per cent confidence), which is an improvement of 43 per cent compared to Planck alone. We test how our results are potentially subject to three astrophysical sources of contamination: source-lens clustering, the intrinsic alignment of galaxy shapes, and baryonic effects. We explore future limitations of the cosmological use of third-order weak lensing, such as the non-linear model and the Gaussianity of the likelihood function

    Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey

    Get PDF
    A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy surveys is described and applied to the Canada–France–Hawaii Telescope (CFHT) Lensing Survey (CFHTLenS). CFHTLenS comprises 154 deg^2 of multi-colour optical data from the CFHT Legacy Survey, with lensing measurements being made in the i′ band to a depth i′_(AB) < 24.7, for galaxies with signal-to-noise ratio ν_(SN) ≳ 10. The method is based on the lensfit algorithm described in earlier papers, but here we describe a full analysis pipeline that takes into account the properties of real surveys. The method creates pixel-based models of the varying point spread function (PSF) in individual image exposures. It fits PSF-convolved two-component (disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginalization over model nuisance parameters of galaxy position, size, brightness and bulge fraction. The method allows optimal joint measurement of multiple, dithered image exposures, taking into account imaging distortion and the alignment of the multiple measurements. We discuss the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image simulations that mirror the observed properties of CFHTLenS have been created to establish the method's accuracy and to derive an empirical correction for the effects of noise bias

    Differential neutrino condensation onto cosmic structure

    Get PDF
    Astrophysical techniques have pioneered the discovery of neutrino mass properties. Current cosmological observations give an upper bound on neutrino masses by attempting to disentangle the small neutrino contribution from the sum of all matter using precise theoretical models. We discover the differential neutrino condensation effect in our TianNu N-body simulation. Neutrino masses can be inferred using this effect by comparing galaxy properties in regions of the universe with different neutrino relative abundance (i.e. the local neutrino to cold dark matter density ratio). In “neutrino-rich” regions, more neutrinos can be captured by massive halos compared to “neutrino-poor” regions. This effect differentially skews the halo mass function and opens up the path to independent neutrino mass measurements in current or future galaxy surveys
    corecore