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ABSTRACT
Maximising the information that can be extracted from weak lensing measurements is a key
goal for upcoming stage IV surveys. This is typically achieved through statistics that are
complementary to the cosmic shear two-point correlation function, the most well established
of which is the weak lensing peak abundance. In this work, we study the clustering of weak
lensing peaks, and present parameter constraint forecasts for an lsst-like survey. We use the
cosmo-SLICS 𝑤CDM simulations to measure the peak two-point correlation function for a
range of cosmological parameters, and use the simulation data to train a Gaussian process
regression emulator which is applied to generate likelihood contours and provide parameter
constraint forecasts from mock observations. We investigate the dependence of the peak two-
point correlation function on the peak height, and find that the clustering of low amplitude
peaks is complementary to that of high amplitude peaks. Consequently, their combination
gives significantly tighter constraints than the clustering of high peaks alone. The peak two-
point correlation function is significantly more sensitive to the cosmological parameters ℎ and
𝑤0 than the peak abundance, and when the probes are combined, constraints on Ωm, 𝑆8, ℎ
and 𝑤0 improve by at least a factor of two, relative to the peak abundance alone. Finally, we
compare the forecasts for weak lensing peaks and weak lensing voids, and show that the two
are also complementary; both probes can offer better constraints on 𝑆8 and 𝑤0 than the shear
correlation function by roughly a factor of two.

Key words: gravitational lensing: weak – large-scale structure of universe – cosmology:
theory – methods: data analysis

1 INTRODUCTION

The standard cosmological model, ΛCDM, consists of matter dom-
inated by cold dark matter (CDM), and a late-time accelerated ex-
pansion that is driven by a positive cosmological constant Λ. This
model is highly successful at describing a number of independent
observations, which constrain the ΛCDM parameters with a large
degree of concordance. Notably, measurements of fluctuations in
the Cosmic Microwave Background (CMB) (Planck Collaboration
et al. 2018) have been used to constrain cosmological parameters
including the present-day expansion rate of the Universe, 𝐻0, the
matter density parameter, Ωm, and the matter fluctuation amplitude
𝜎8, defined as the root-mean-squared matter density perturbations
smoothed on 8ℎ−1 Mpc scales.

★ E-mail:christopher.t.davies@durham.ac.uk (CTD)

Gravitational lensing is another promising observational probe
that can be used to constrain many cosmological parameters, where
the light of distant source images is distorted by the gravitational po-
tentials of the foreground matter. In the weak lensing (WL) regime,
light is deflected by the large scale structure (LSS) of the Universe,
and the weak lensing signal is measured through the correlations
in distortions of many source galaxies (Bacon et al. 2000; Kaiser
et al. 2000; Van Waerbeke et al. 2000; Wittman et al. 2000). This
allows us to probe the total matter distribution of the Universe on the
largest scales (see Bartelmann & Schneider 2001; Kilbinger 2015,
for reviews), and offers a powerful method to study the properties
of dark matter and dark energy.

Recent WL observations that supplement the CMB parameter
measurements include the Dark Energy Survey (DES) (DES Col-
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2 Davies et. al

laboration et al. 2021) 1, Hyper Supreme-Cam (HSC) (Hikage et al.
2019) 2 and the Kilo-Degree Survey (KiDS) (Asgari et al. 2020) 3
WL surveys. All of these surveys measure lower values of 𝜎8 com-
pared to Planck, with a statistically significant disagreement arising
between the Planck and KiDS constraints. However, the more re-
cent results from DES are statistically compatible with Planck. This
is one example where different observations point to slightly dif-
ferent values of certain cosmological parameters, which, in more
extreme cases, may imply the presence of either unaccounted for
systematics or new physics which is not modelled. An example of a
larger discrepancy, leading to a parameter tension, is the𝐻0 tension,
where multiple observations find that measurements from the early
Universe are broadly inconsistent with those of the late Universe
(Verde et al. 2019), particularly the distance scale measurement of
𝐻0 based on Cepheids by the SH0ES collaboration (Riess et al.
2019).

In order to address these parameter tensions, and more deeply
probe the nature of the Universe, it is important to measure cosmo-
logical parameters as precisely as possible. This can be achieved by
maximising the information that can be extracted from a given sur-
vey. The standard approach for weak lensing surveys is to measure
ΛCDM parameters with two-point statistics, such as the shear-shear
correlation function (Schneider et al. 2002; Semboloni et al. 2006;
Hoekstra et al. 2006; Fu et al. 2008; Heymans et al. 2012; Kilbinger
et al. 2013; Hildebrandt et al. 2017; Troxel et al. 2018; Hikage
et al. 2019; Aihara et al. 2019; Asgari et al. 2020; DES Collabora-
tion et al. 2021). However, the shear two-point correlation function
(2PCF) does not capture non-Gaussian information, and, due to the
non-linear evolution of the Universe, weak lensing data are highly
non-Gaussian. To fully exploit the data, many non-Gaussian statis-
tics have been developed, which encapsulate information beyond
two-point statistics. A well-established example is the abundance of
WL peaks (local maxima in the convergence field), which has been
shown to be complementary to the shear two-point function and
helps break the Ωm-𝜎8 parameter degeneracy (Jain & Van Waer-
beke 2000; Pen et al. 2003; Dietrich & Hartlap 2010). Peaks are
also shown to outperform the standard methods for constraining the
sum of neutrino mass (Li et al. 2019) and 𝑤0 (Martinet et al. 2020),
and can be used to provide constraints on modified gravity theories
(Liu et al. 2016). When used in conjunction with the shear two
point correlation function, WL peaks have been used to provide the
tightest constraints on 𝑆8 from DES-Y1 WL data (Harnois-Déraps
et al. 2020). WL peaks also offer utility for other non-Gaussian
statistics, such as WL voids (Davies et al. 2018, 2020b), where the
peaks can be used as tracers to identify the voids. By including WL
peaks as a complementary statistic, the measurement errors on cos-
mological parameters can be reduced, which will help inform the
statistical significance of any parameter tensions between multiple
observations.

When used to constrain cosmological parameters, peak analy-
ses typically focus on theWL peak abundance, which is the number
density of WL peaks as a function of their lensing amplitude. Stud-
ies have shown that the WL peaks with the highest amplitudes tend
to correspond to large haloes along the line of sight (Hamana et al.
2004; Liu & Haiman 2016; Wei et al. 2018). For this reason, WL
peaks identified in surveys such as HSC can be used to search for
galaxy clusters (e.g., Hamana et al. 2020). Furthermore, shear 2PCF

1 https://www.darkenergysurvey.org/
2 https://hsc.mtk.nao.ac.jp/ssp/
3 http://kids.strw.leidenuniv.nl/

measurements are typically combined with measurements of galaxy
clustering (and galaxy-galaxy lensing) to further tighten the cosmo-
logical constraints (e.g., DES Collaboration et al. 2021). So, if WL
peaks correspond to massive haloes, and hence massive galaxies,
and the clustering of these galaxies is known to contain comple-
mentary information, then studying and exploiting the clustering of
WL peaks is a natural next step in maximising the utility of WL
peaks.

Previously, Marian et al. (2013) have shown that the 2PCF
of WL peaks with high lensing amplitudes does not contain much
complementary information to the peak abundance alone. In Davies
et al. (2019a), we presented some simple scaling relations for the
WL peak 2PCF, and found that the clustering of low-amplitude WL
peaks also appears to be sensitive to the cosmological parameters
Ωm and𝜎8. In this work, with amore detailed analysis, we show that
the clustering of low-amplitude peaks contains significant comple-
mentary information to the clustering of high peaks, and that when
the clustering of multiple peak height ranges are combined, the WL
peak 2PCF offers similar constraining power to the peak abundance
alone, where the two probes have different degeneracy directions.
Therefore, we also show that, when their abundance and 2PCF are
combined, the total cosmological information that is extracted from
the WL peaks is significantly improved.

We use the numerical simulation suite, cosmo-SLICS
(Harnois-Déraps et al. 2019) to measure the peak abundance and
2PCF, for a range of cosmological parameters. This data is then used
to train a Gaussian process regression emulator, which, combined
with Markov chain Monte Carlo, allows us to generate likelihood
contours and provide forecast parameter constraints for an lsst-like
survey.

The layout of the paper is as follows. In Section 2we outline the
relevant theory for our WL peak analysis. In Section 3 we describe
how we generate our mock observational data, and our emulation
and likelihood analysis pipeline. In Section 4 we present the WL
peak statistics used in the analysis, first from themock data, and then
from the emulator, in order to understand how these statistics depend
on the cosmological parameters Ωm, 𝑆8, ℎ and 𝑤0. In Section 5 we
present the parameter constraint forecasts for theWLpeak 2PCF and
peak abundance. Finally, our conclusions are presented in Section
6. We also have two appendices where we present the covariance
matrix used in our analysis, and study the accuracy of our emulator.

2 THEORY

The lens equation for a gravitationally-lensed image, relating the
deflection angle 𝛼𝛼𝛼 to the true position of the source 𝛽𝛽𝛽 and the
observed position of the image 𝜃𝜃𝜃, is

𝛼𝛼𝛼 = 𝛽𝛽𝛽 − 𝜃𝜃𝜃 . (1)

Neglecting second-order effects, the deflection angle is the gradient
of a 2D lensing potential 𝜓,

𝛼𝛼𝛼 = ∇∇∇𝜓 , (2)

where 𝜓 is given by

𝜓(𝜃𝜃𝜃, 𝜒) = 2
𝑐2

∫ 𝜒

0

𝑓𝐾 (𝜒 − 𝜒′)
𝑓𝐾 (𝜒) 𝑓𝐾 (𝜒′)Φ(𝜒′𝜃𝜃𝜃, 𝜃𝜃𝜃)𝑑𝜒′ . (3)

Here, 𝜒 is the comoving distance from the observer to the source and
𝜒′ is the comoving distance from the observer to the continuously-
distributed lenses. 𝑓𝐾 (𝜒) is the comoving angular distance, with
the spatial curvature of the universe denoted by 𝐾 . Note that for a

MNRAS 000, 1–17 (2021)
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Cosmology with WL peaks 3

flat universe with 𝐾 = 0 (as used in this work) 𝑓𝐾 (𝜒) = 𝜒. Φ is the
3D lensing potential of the lens, and 𝑐 the speed of light.Φ is given
by the Poisson equation

∇2Φ = 4𝜋𝐺𝑎2 𝜌̄𝛿 , (4)

where 𝜌 is thematter density of theUniverse (with themean denoted
by a bar), 𝛿 ≡ 𝜌/𝜌̄−1, 𝑎 is the scale factor and𝐺 is the gravitational
constant.

The convergence 𝜅 and shear 𝛾 = 𝛾1 + 𝑖𝛾2 can be related to the
lensing potential via

𝜅 ≡ 1
2
∇2
𝜃𝜃𝜃
𝜓 , (5)

and

𝛾1 ≡
1
2
(
∇𝜃𝜃𝜃1∇𝜃𝜃𝜃1 − ∇𝜃𝜃𝜃2∇𝜃𝜃𝜃2

)
𝜓, 𝛾2 ≡ ∇𝜃𝜃𝜃1∇𝜃𝜃𝜃2𝜓, (6)

where ∇𝜃𝜃𝜃 ≡ (𝜒)−1∇. Eqs. (3), (4) and (5) allows us to express the
convergence in terms of the matter overdensity

𝜅(𝜃𝜃𝜃, 𝜒) =
3𝐻20Ωm
2𝑐2

∫ 𝜒

0

𝑓𝐾 (𝜒 − 𝜒′)
𝑓𝐾 (𝜒) 𝑓𝐾 (𝜒′) 𝛿(𝜒

′𝜃𝜃𝜃, 𝜒′)
𝑎(𝜒′) 𝑑𝜒′ . (7)

The above derivation uses a fixed source plane.However, in real
WL observations, the catalogue of source galaxies has a probability
distribution 𝑛(𝜒) that spans over a range of 𝜒 values, and Eq. (7) is
then weighted by this distribution to obtain 𝜅(𝜃𝜃𝜃) (see, e.g., Kilbinger
2015, for details)

𝜅(𝜃𝜃𝜃) =
∫ 𝜒

0
𝑛(𝜒′)𝜅(𝜃𝜃𝜃, 𝜒′)𝑑𝜒′ . (8)

WL observations rely on accurately measuring the shapes of
galaxies, and cross correlating the shapes of neighbouring galaxies.
However, measurements of the galaxy shapes used to extract the
lensing signal are dominated by the random galaxy shapes and
orientations, which is referred to as galaxy shape noise (GSN).
Since the lensing signal is weak, when identifying WL peaks (local
maxima in the convergence field 𝜅(𝜃𝜃𝜃)) it is convenient to express the
convergence relative to the standard deviation of the corresponding
GSN component of the field, 𝜎GSN. This is given by the following
definition of signal-to-noise,

𝜈 =
𝜅

𝜎GSN
, (9)

where 𝜎GSN is the standard deviation of the contributions to the
signal from galaxy shape noise. The 𝜎GSN term can be calculated
by generating mock GSN maps using the prescription from Jain &
Van Waerbeke (2000) and Van Waerbeke et al. (2000) and applying
to them any transformations also applied to the convergence maps,
such as smoothing. Mock GSN maps are generated by assigning
to pixels random convergence values from a Gaussian distribution
with standard deviation

𝜎2pix =
𝜎2int

2𝜃2pix𝑛gal
, (10)

where 𝜃pix is the width of each pixel, 𝜎int is the intrinsic ellipticity
dispersion of the source galaxies, and 𝑛gal is the measured source
galaxy number density. In thisworkweuse𝜎int = 0.28 and 𝑛gal = 20
arcmin−2 as will be discussed in Section 3.1.

Asmentioned in the introduction,WL peaks are closely related
to the dark matter haloes along the line of sight. In cosmology, both
the abundance and large-scale clustering of haloes encode useful in-
formation about the underlying cosmological model and parameter

values. Therefore, as well as studying the abundance of WL peaks,
we will also study their clustering. The extent to which objects are
clustered can be measured through the two-point correlation func-
tion (2PCF) which is defined as the excess probability, relative to a
random distribution, of finding a pair of objects at a given separation
𝜃. Formally, this is written as

𝑑𝑃𝑖 𝑗 (𝜃) = 𝑛2 (1 + 𝜉 (𝜃))𝑑𝐴𝑖𝑑𝐴 𝑗 , (11)

where 𝑛 is the expected tracer number density, 𝑑𝐴𝑖 and 𝑑𝐴 𝑗 are
two sky area elements that are separated by a displacement 𝜽 with
amplitude 𝜃, and 𝜉 (𝜃) is the 2PCF. We have 𝜉 (𝜽) = 𝜉 (𝜃) thanks to
statistical isotropy. In practice, the 2PCF can be measured through
the Landy-Szalay estimator (Landy & Szalay 1993) which requires
the generation of matching catalogues containing randomly dis-
tributed points and is given by

𝜉LS (𝜃) = 1 +
(
𝑁𝑅

𝑁𝐷

)2
𝐷𝐷 (𝜃)
𝑅𝑅(𝜃) −

(
𝑁𝑅

𝑁𝐷

)
𝐷𝑅(𝜃)
𝑅𝑅(𝜃) . (12)

In the above 𝑁𝐷 and 𝑁𝑅 are the numbers of data and random points,
and 𝐷𝐷, 𝐷𝑅 and 𝑅𝑅 are the numbers of data-data, data-random
and random-random pairs in bins 𝜃 ± 𝛿𝜃, respectively. See Davies
et al. (2019a) for more details about the measurement of the peak
2PCF, which are important for small lensing maps.

3 METHODOLOGY

In this section we describe the methodology followed in this work,
including the simulations, mock lensing data, emulation and likeli-
hood analysis.

3.1 Mock Data

In this work we use the SLICS and cosmo-SLICS (Harnois-Déraps
& vanWaerbeke 2015; Harnois-Déraps et al. 2018, 2019) mockWL
convergence maps, which we briefly outline in this subsection.

The cosmo-SLICS are a suite of high-resolution 𝑁-body sim-
ulations that were run for 26 sets of [Ωm, 𝑆8, ℎ, 𝑤0] cosmological
parameters. Here 𝑆8 ≡ 𝜎8 (Ωm/0.3)0.5, ℎ = 𝐻0/100kms−1 Mpc−1
is the reduced Hubble constant, and 𝑤0 the dark energy equation-
of-state parameter, which is assumed to be a constant that is allowed
to deviate from −1 (cosmological constant).

The four dimensional parameter space is sampled using a
Latin hypercube, which samples the parameter space comprehen-
sively with a low node count. The exact cosmological parameter
space that is probed by the cosmo-SLICS is shown in Fig. 1. Each
simulation volume is a cube with length 𝐿 = 505 ℎ−1Mpc, with
𝑁 = 15363 dark matter particles. To reduce the impact of cosmic
variance, two simulations are run for each cosmology, starting from
different (paired) initial conditions. For each set of cosmological
parameters, 50 pseudo-independent light-cones are constructed by
resampling projected mass sheets, which are then ray-traced under
the Born approximation to construct lensing maps and catalogues
(see Harnois-Déraps et al. 2019, for full details about the light-cone
and catalogue construction).

We use the Generic cosmo-SLICS source catalogue selected
over the range 𝑧𝑠 = [0.6, 1.4] to match lsst specifications, which
gives a conservative source galaxy number density of 20 arcmin−2.
From this we generate 50 WL convergence maps for each of the
nodes, with a sky coverage of 10 × 10 deg2 each and 36002 pixels,
following the method described in Giblin et al. (2018). These maps
are then smoothed with a Gaussian filter with smoothing scale 𝜃𝑠 =

MNRAS 000, 1–17 (2021)



4 Davies et. al

1 arcmin. Davies et al. (2019a) contains a study of the impact of
different smoothing scales on the WL peak 2PCF.

For estimates of the covariance matrices, we use the SLICS
suite to produce 615 WL convergence maps at the fiducial cosmol-
ogy, which match the properties of the cosmo-SLICS maps. These
are obtained from fully independent 𝑁-body realisations carried
out at the same cosmology4, but with different seeds in their initial
conditions, allowing to accurately capture the sample variance. The
larger number of SLICS realisations relative to cosmo-SLICS al-
lows us to calculate robust covariance matrices and to use large data
vectors in the likelihood analysis below when combining probes.

3.2 Emulation and likelihood analysis

In this subsection, we outline the procedure used to test the sensi-
tivity of WL peak statistics to the cosmological parametersΩm, 𝑆8,
ℎ and 𝑤0.

First, we measure the WL peak statistics from the 50 conver-
gence maps for each of the nodes shown in Fig. 1. Then, in order to
predict the WL peak statistics at arbitrary points in this parameter
space, we use the Gaussian process (GP) regression emulator from
scikit-learn (Pedregosa et al. 2011) to interpolate the peak statis-
tics between nodes. GP regression is a non-parametric Bayesian
machine learning algorithm used to make probabilistic predictions
that are consistent with the training data (see, e.g., Habib et al. 2007;
Schneider et al. 2008, for some of its early applications in cosmol-
ogy). The accuracy of the GP emulator trained on cosmo-SLICS
has been tested extensively and shown to reach a few percent level
in predictions of weak lensing shear two-point correlation func-
tions (Harnois-Déraps et al. 2019), density split statistics (Burger
et al. 2020), persistent homology statistics (Heydenreich et al. 2020),
aperture mass statistics (Martinet et al. 2020) andWL void statistics
(Davies et al. 2020b). In this work the average peak statistics and
their standard errors at each node are used as the training data. We
present results of the accuracy of the emulator for the peak statistics
in Appendix A.

Finally, once the emulator has been trained and tested, we use
Monte Carlo Markov Chain (MCMC) to estimate the posteriors of
the parameters for the entire parameter space and produce likelihood
contours.Weuse the emceePython package (Foreman-Mackey et al.
2013) to conduct the MCMC analysis in this work sampling the 4D
parameter space as follows. We employ a Bayesian formalism, in
which the likelihood of the set of cosmological parameters 𝑝𝑝𝑝 =

[Ωm, 𝑆8, ℎ, 𝑤0] given a data set 𝑑𝑑𝑑, is given by

𝑃(𝑝𝑝𝑝 |𝑑𝑑𝑑) = 𝑃(𝑝𝑝𝑝)𝑃(𝑑𝑑𝑑 |𝑝𝑝𝑝)
𝑃(𝑑𝑑𝑑) , (13)

where 𝑃(𝑝𝑝𝑝) is the prior, 𝑃(𝑑𝑑𝑑 |𝑝𝑝𝑝) is the likelihood of the data con-
ditional on the parameters, and 𝑃(𝑑𝑑𝑑) is the normalisation. In this
work we use flat priors with the following upper and lower limits
respectively for Ωm: [0.10, 0.55], 𝑆8: [0.61, 0.89], ℎ: [0.60, 0.81],
𝑤0: [-1.99, -0.52], which matches the parameter space sampled by
cosmo-SLICS. The log likelihood can be expressed as

log(𝑃(𝑑𝑑𝑑 |𝑝𝑝𝑝)) = −1
2
[𝑑𝑑𝑑 − 𝜇(𝑝𝑝𝑝)] 𝐶−1 [𝑑𝑑𝑑 − 𝜇(𝑝𝑝𝑝)] , (14)

where 𝜇(𝑝𝑝𝑝) is the prediction generated by the emulator for a set of
parameters 𝑝𝑝𝑝, and 𝐶−1 is the inverse of the covariance matrix. We
use the emulator’s prediction of a statistic at the fiducial cosmology

4 The SLICS cosmology has the following parameter values: [Ωm, 𝜎8, ℎ,
𝑤0, 𝑛s, Ωb] = [0.2905, 0.826, 0.6898, -1.0, 0.969, 0.0474].
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Figure 1. The 4-dimensional parameter space ([Ωm, 𝑆8, ℎ, 𝑤0 ]) sampled
by the cosmo-SLICS simulation suite. The fiducial cosmology is indicated
by a star with parameter values [0.29, 0.82, 0.69, −1.00].

as the data𝑑𝑑𝑑. This choice is for simplicity and presentation purposes,
which ensures that the confidence intervals are always centred on
the true values of the cosmological parameters allowing for easier
comparisons between multiple probes.

The likelihood returns a 4D probability distribution that indi-
cates how well different regions of the parameter space match the
input data 𝑑𝑑𝑑. Note that Eq. (14) assumes that the covariance matrix
does not depend on the cosmological parameters.

We use the 615 SLICS WL map realisations (which match the
fiducial cosmology) to calculate the covariance matrices, and then
divide it by a factor of 180 to rescale the covariance matrix from
a 100 deg2 area to the lsst survey area, which we take as 18, 000
deg2. The joint covariance matrix for the peak probes studied in
this work is presented in Appendix B. We also multiply the inverse
covariance matrix by a debiasing factor 𝛼, which accounts for the
bias introducedwhen inverting a noisy covariancematrix (Anderson
2003; Hartlap et al. 2007), and is given by:

𝛼 =
𝑁 − 𝑁bin − 2

𝑁 − 1 . (15)

Here 𝑁 = 615 is the number of WL maps used to calculate the
covariance matrix and 𝑁bin is the number of bins used to measure
the statistic.

4 WEAK LENSING PEAK STATISTICS

In this section, we present the weak lensing peak statistics studied
in this work, which include the peak abundance and the peak 2PCF.
For each statistic, we first show their measurements from the cosmo-
SLICS nodes which are used as the training data for the emulator.
We then present emulations of the statistic by varying one cosmo-
logical parameter at a time, to exemplify its sensitivity to different
cosmological parameters, which will aid the interpretation of the
forecast cosmological constraints in Section 5.

MNRAS 000, 1–17 (2021)



Cosmology with WL peaks 5

1 0 1 2 3 4 5 6 7

10 2

10 1

100

101

dn
p/d

Figure 2. (Colour Online) The differential WL peak number density (abun-
dance) as a function of peak height 𝜈. The grey curves correspond to the
26 cosmo-SLICS nodes in Fig. 1, with the fiducial cosmology plotted as a
blue thick curve. The orange shaded regions shows the 1𝜎 standard error
measured from the 50 fiducial cosmoSLICS realisations, multiplied by a
factor of ten to increase visibility.

4.1 Weak lensing peak abundance

Fig. 2 shows the differential WL peak abundance (number density)
measured in each of the 26 nodes in Fig. 1. The abundance of the
fiducial cosmology is shown by the blue curve, with the rest of the
cosmologies plotted in grey.

First, the figure shows that there are an appreciable number
of peaks with amplitudes below 𝜈 = 0, which correspond to local
maxima in regions that are underdense. In this analysis we do not
use peaks with 𝜈 < 0 for our forecast constraints for the following
two reasons. First, Martinet et al. (2018) have shown that peaks with
𝜈 < 0 correlate very strongly with peaks with 𝜈 > 0, and so there is
little gain in parameter constraints when these peaks are included.
Second, due to their low amplitude, these peaks are also more likely
to be affected by GSN.

The maxima of the peak abundance occurs just above 𝜈 = 1 for
all cosmologies. Due to the low signal-to-noise ratio, this indicates
that a large fraction of the total number of peaks correspond to
spurious local maxima induced by galaxy shape noise, rather than
a physical signal induced by matter overdensities along the line of
sight, while more peaks at the high-𝜈 end are produced by a true
physical signal.

As the peak abundance approaches higher 𝜈 values, the spread
in the peak abundances between different cosmologies increases
significantly, where the abundance of peaks at 𝜈 = 6 can differ
by an order of magnitude between the most extreme cosmologies.
This is due to two factors. First, because the peaks at this amplitude
are not dominated by noise, differences in the physical signal are
more visible. Second, because the high-mass end of the halo mass
function varies more significantly as a function of cosmological
parameters, so does the peak abundance, since the largest peaks are
created by the largest haloes (Liu & Haiman 2016; Wei et al. 2018).

Whilst the high-𝜈 end of the abundance exhibits the greatest
variation amongst the different cosmological parameters, this region
also has the highest sample variance, since high peaks are orders of
magnitude less abundant than low peaks. Therefore, as 𝜈 increases,
the increased spread between cosmologies is in direct competition
with the increased statistical uncertainty. For this reason it is im-
portant to consider the abundance of peaks over a wide 𝜈 range in

our forecasts. We also note that large 𝜈 peaks are more affected by
uncertainties such as intrinsic alignments and baryonic physics, as
shown in Harnois-Déraps et al. (2020).

Next, in order to aid the physical interpretation of how the WL
peak abundances (Fig. 2) depend on the four parameters, Ωm, 𝑆8,
ℎ and 𝑤0, we use the cosmo-SLICS data to train a GP emulator as
discussed in 3.2 and present the emulated peak abundances in the
cosmo-SLICS parameter space. In Fig. 3 we present these emulator
predictions while varying one parameter at a time.

The emulated peak abundances plotted in Fig. 3 sample the
signal around the test cosmology with parameters [Ωm,𝑆8,ℎ,𝑤0] =
[0.3, 0.8, 0.7, −1.0]. Each sub-panel contains curves where one
parameter is varied above and below these values. The bottom row
of sub panels shows the ratio of the curves relative to the test
cosmology. 1𝜎 standard errors measured from the 50 cosmo-SLICS
realisations are included on the test cosmology, shown by the shaded
blue region. Finally, the 𝜈 range plotted here is slightly narrower
than that presented in Fig. 2, since we are now showing the 𝜈 range
that will be used to forecast the peak abundance constraints, which
is 𝜈 ∈ [0, 6]. We do not use peaks with 𝜈 > 6 for two reasons.
First, due to a low number density, the sample variance in this
regime is very high. Second, as previously mentioned, this regime
is significantly affected by uncertainties such as intrinsic alignments
and baryonic physics. We have also performed tests using a higher
upper limit of 𝜈 < 8, and find that it has nearly no impact on our
results. Therefore, using 𝜈 < 6 allows us to stay within the regime
that is less affected by the aforementioned uncertainties, whilst still
encapsulating maximal cosmological information.

Panel A shows how the peak abundance depends on Ωm. Note
that since 𝑆8 = 𝜎8

(
Ωm/0.3

)0.5, 𝜎8 increases when Ωm is reduced
(and vice versa), in order for 𝑆8 to remain constant. Increasing
Ωm (with 𝑆8 and the other parameters held constant) reduces the
abundance of WL peaks with amplitudes 𝜈 < 2 but increases the
abundance of peaks with amplitudes 𝜈 > 2, relative to the fiducial
case. This is because a higherΩm increases the matter content of the
universe, which allows dark matter haloes to grow more massive,
increasing their lensing signal and the resulting peak amplitudes.
The opposite behaviour can be seen when Ωm is reduced relative
to the fiducial case, with more peaks below 𝜈 = 2 and fewer above.
There is an upturn in the peak abundance for Ωm = 0.1 at 𝜈 ≈ 5,
which is due to the fact that 𝑆8 is held constant, rather than 𝜎8.

Panel B shows the peak abundance for different 𝑆8 values. The
results presented in this sub-panel vary more strongly compared
to all other sub-panels, verifying that the peak abundance is the
most sensitive to 𝑆8 of all the parameters studied here. Similar to
the behaviour seen for Ωm, increasing 𝑆8 reduces the number of
small peaks below 𝜈 ≈ 2.7, but increases the number of large peaks
above this point. The opposite behaviour is seen for decreasing 𝑆8.
Increasing 𝑆8 leads to greater clustering of matter, which will place
more haloes closer together. The increased mass along an overdense
line of sight translates into a greater lensing signal, which produces
more peaks of higher amplitudes. This also reduces the number of
small peaks since fewer haloes are in isolation which would produce
small peaks.

Panel C shows how the peak abundance changes with ℎ. Peaks
with amplitudes 𝜈 < 3 are mostly unaffected, however there is a
small amount of sensitivity to ℎ at the high 𝜈 end, where increasing
ℎ slightly increases the number of high peaks and vice versa. This
result is not entirely surprising: from Eq. (7) we can see that the
dependencies of ℎ, or equivalently 𝐻0, cancel out, because the
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Figure 3. (Colour Online) Top row: the emulated peak abundance. The curves correspond to the cosmological parameters [Ωm, 𝑆8, ℎ, 𝑤0] with values [0.3,
0.8, 0.7, −1.0], unless otherwise stated in the sub-panel legends. Each sub-panel corresponds to varying one cosmological parameter at a time, denoted in the
legend. Bottom row: The curves from the top row, divided by the fiducial cosmology (blue curve in the top row). The 1𝜎 standard errors measured from the
50 cosmo-SLICS realisations are included on the fiducial (blue) curves, and they are barely visible in the upper sub-panels.

comoving distance can be written as

𝜒(𝑧) = 𝑐

𝐻0

∫
1

𝐸 (𝑧′) 𝑑𝑧
′ , (16)

where 𝐸ΛCDM (𝑧) is defined as

𝐸ΛCDM (𝑧) ≡ 𝐻ΛCDM (𝑧)
𝐻0

= Ωm (1 + 𝑧)3 + 1 −Ωm , (17)

for a flat ΛCDM cosmology (as is the case of our fiducial cosmol-
ogy), and is independent of ℎ. This means that the 𝐻0 factors in the
pre-factor, and the 𝜒 and 𝑑𝜒 terms of Eq. (7) cancel out, so that the
only dependence on 𝐻0 in 𝜅 would come through the matter density
contrast 𝛿. In the linear-perturbation regime, the evolution of 𝛿 can
be expressed in the linear growth factor 𝐷+, which for a flat ΛCDM
cosmology is given by the following solution:

𝐷+ (𝑧) = 𝐸ΛCDM (𝑧)
[∫ ∞

0

(1 + 𝑧′)
𝐸3
ΛCDM (𝑧′)

𝑑𝑧′
]−1 ∫ ∞

𝑧

(1 + 𝑧′)
𝐸3
ΛCDM (𝑧′)

𝑑𝑧′,

(18)

where the term in the bracket offers the normalisation to ensure that
𝐷+ (𝑧 = 0) = 1 as per the usual convention—this suggests that for
flat ΛCDMmodels with the sameΩm, 𝜎8 and 𝐷+, 𝜅 is independent
of ℎ. However, we remark that the above argument only applies to
a universe with strictly no radiation. In practice, increasing ℎ with
Ωm fixed would mean that the physical matter density today,Ωmℎ2,
increases, which brings the matter-radiation equality to higher red-
shift. Since the growth of matter perturbations is slower during ra-
diation domination but faster during matter domination, this means
that small-scale matter perturbations experience a stronger growth
in the case of a larger ℎ, and thus it requires a lower value of 𝐴𝑠 (the
amplitude of the primordial power spectrum) in order to reach the
desired 𝜎8. Consequently, the matter clustering on large scales—
e.g., at 𝑘 smaller than ' 0.01ℎMpc−1, which corresponds to the
horizon scale at matter-radiation equality—will indeed be weaker.
Actually, a more detailed calculation shows that, when comparing
the cases of ℎ = 0.9 and 0.7 (with Ωm and 𝜎8 fixed), the late-time
matter power spectrum 𝑃(𝑘) is higher (lower) in the latter than in
the former for 𝑘 & 0.1ℎMpc−1 (𝑘 . 0.1ℎMpc−1). This will have
nontrivial implications for the peak 2PCFs as we shall see shortly.
Nevertheless, for the peak abundance, the most relevant scales are
𝑘 ' 0.1–1ℎMpc−1, where the cases of ℎ = 0.7 and 0.9 have similar

matter clustering amplitudes, which is slightly higher for larger ℎ:
as this 𝑘 range corresponds to the sizes of halo-forming regions, this
is consistent with the high-𝜈 behaviour of the middle right panel.

Panel D shows the peak abundances with varying 𝑤0. Similar
to ℎ, the peak abundance does not appear to be very sensitive to
changes in 𝑤0, but increasing 𝑤0 does indeed create slightly more
low-𝜈 peaks and fewer high-𝜈 peaks compared to the fiducial case,
and vice versa. A different dark energy equation of state can change
the expansion rate, therefore affecting the comoving distances, the
lensing kernel in Eq. (7), and the growth rate of matter perturbation
𝛿. The physics underlying the qualitative behaviours shown in these
panels is actually complicated and quite interesting. Usually, a more
negative 𝑤0, e.g., 𝑤0 < −1.0, implies an increase of the dark energy
density with time and therefore (for the samematter density) a faster
transition from the phase of decelerated expansion to an accelerated
one dominated by dark energy, compared to standard ΛCDM. But
given that we fix ℎ and therefore 𝐻0, at 𝑧 > 0 the expansion rate is
actually slower than the fiducial ΛCDMmodel, because the density
of dark energy in this case decreases with redshift, and so at 𝑧 > 0
the total density of matter and dark energy is smaller than inΛCDM.
More explicitly, we have 𝐸𝑤0 (𝑧) ≤ 𝐸ΛCDM (𝑧) for 𝑤0 < −1, where

𝐸𝑤0 (𝑧) =
𝐻𝑤0 (𝑧)
𝐻0

= Ωm (1 + 𝑧)3 + [1 −Ωm] (1 + 𝑧)3(1+𝑤0) , (19)

which reduces to Eq. (17) when 𝑤0 = −1. Because the dark energy
in our simulations is assumed to be non-clustering, the only effect
of varying 𝑤0 is to modify the background expansion history, which
leads to a scale-independent change in the linear matter clustering,
𝑃(𝑘). It may seem that, since𝑤0 = −1.5 leads to a slower expansion,
it will increase matter clustering. While this is true, we have to note
that in this comparison we have fixed 𝑆8 (and equivalently𝜎8) today
in all three cases, and so this means that, in order to have the same
𝜎8 at the present day, the primordial power spectrum must be lower
in the 𝑤0 = −1.5 case (we have explicitly checked this using camb).
At an initial thought, this seems to suggest that this model predicts
less structure formation than ΛCDM (until 𝑧 = 0), which is against
the results of Fig. 3. However, recall that another effect of having a
slower expansion is that the Universe becomes older at 𝑧 = 0, and
distances to the same redshift become larger; the latter, in particular,
means that in between the observer and the source(s) there would be
more volume, and more structures such as large dark matter haloes.
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Since these haloes produce the high-𝜈 peaks, the net effect can be a
larger abundance of such peaks. Fig. 3 indeed confirms that the two
competing effects — the decrease of large-scale structure due to the
lowered primordial power spectrum and the larger volume between
the observer and a fixed source redshift — give rise to a higher peak
number count at 𝜈 & 2.3. For low peaks, the total effect is less clear-
cut, since a peak is defined as a pixel in the convergence map with a
higher 𝜅 value than all its neighbouring pixels, and both the central
and the neighbouring pixels could be affected by chance alignments
of small dark matter structures; Fig. 3 shows that at 𝜈 . 2.3 the peak
abundance is smaller in 𝑤0 = −1.5 than in ΛCDM. The behaviour
of the 𝑤0 = −0.5 model can be similarly explained.

Figs. 2 and 3 show that the peak abundance is mostly sensitive
to changes in Ωm and 𝑆8, and less so to ℎ and 𝑤0, with sensitivity
to cosmology coming from both the high and low amplitude peaks.

4.2 Weak lensing peak two-point correlation function

In order to measure the WL peak 2PCF, we first remove peaks with
amplitudes below a given 𝜈 threshold, and then repeat this step with
different 𝜈 thresholds in order to create multiple peak catalogues.
This procedure is motivated by the following factors.

First, as discussed in Section 4.1, a significant fraction of the
WL peak population is noise-dominated (low 𝜈), suggesting that
their spatial distribution (to which the 2PCF is sensitive) may not
contain useful cosmological information. We have tested this asser-
tion, and found that the WL peak 2PCF measured using peaks of all
heights has a very low amplitude and exhibits only small variations
between the 26 cosmo-SLICS nodes. This indicates that when no
distinction is made based on peak heights, the average clustering of
WL peaks is close to that of a randomly distributed sample. There-
fore, in order to extract useful information on the clustering of WL
peaks, we must first remove the low-amplitude noise-dominated
peaks. We have tested a range of 𝜈 thresholds, and use two criteria
to determine the best threshold. First, the amplitude of the 2PCF
measurement must be sufficiently high so that the clustering signal
is not noise dominated. Second, the variance between 2PCFs for
different cosmological parameters must be larger than the variance
with which the fiducial 2PCF is measured. This ensures that any
cosmological information will not be lost to noisy measurements.
We found that both these criteria can be met with a threshold as low
as 𝜈 = 1.

Second, varying the 𝜈 threshold and using multiple WL peak
catalogues produces multiple WL peak 2PCF measurements. The
change in the 2PCF as the 𝜈 threshold changes is also sensitive to the
underlying cosmology, so we expect that the different 2PCF mea-
surements will contain complementary information to each other, so
that combining these measurements will yield tighter cosmological
parameter constraints.

Fig. 4 shows the 2PCFs for fourWLpeak catalogueswith 𝜈 > 1
(top left), 𝜈 > 2 (top right), 𝜈 > 3 (bottom left) and 𝜈 > 4 (bottom
right). The 2PCFs for the 26 cosmo-SLICS nodes are plotted, with
the fiducial cosmology plotted in blue, and all other cosmologies
plotted in grey.

The 2PCF measurements for the 𝜈 > 1 catalogue have the low-
est amplitude. As the 𝜈 threshold increases, so does the amplitude
of the 2PCF for all cosmologies, indicating that the high 𝜈 peaks are
more clustered than the low 𝜈 peaks. Both the gradient and the am-
plitude of the 2PCF change as the 𝜈 threshold increases, however the
changes in amplitude appear to be the most dominant feature. This
can be explained by the relationship between WL peaks and dark
matter haloes – more massive haloes are known to be more strongly

biased and clustered, because they form from higher density peaks
of the primordial density field.

Similar to Section 4.1, we use the cosmo-SLICS data from Fig.
4 to train a GP emulator as discussed in 3.2, and present emulated
peak 2PCFs in the cosmo-SLICS parameter space by varying one
parameter at a time. The results are plotted in Fig. 5. The bottom row
in each section shows the ratio relative to the test cosmology. The
1𝜎 standard errors measured from the 50 cosmo-SLICS realisations
are included for the fiducial cosmology and are shown by the shaded
blue region. The top and bottom sections of Fig. 5 shows results for
the 2PCF of peaks with 𝜈 > 2 and 𝜈 > 4 respectively. We choose to
show results for 𝜈 > 2 rather than 𝜈 > 1 since, as we will see in Fig.
6, 𝜈 > 2 gives stronger parameter constraints than the 𝜈 > 1 case.

Panel A shows the emulated 2PCF for 𝜈 > 2 varying only
Ωm. Increasing Ωm has less of an impact on the 2PCF for small 𝜃
compared to large 𝜃, effectively steepening the curve relative to the
fiducial case by a small amount. When decreasing Ωm, the above
behaviour is mirrored, except the overall magnitude of the change
is larger compared to the case where Ωm is increased. This shows
that Ωm dictates the gradient of the 2PCF, and appears to be more
sensitive to low Ωm values. It might seem counter-intuitive that a
model with smaller Ωm would predict a stronger clustering for WL
peaks, but we note again that here 𝑆8 has been fixed when Ωm is
being varied, so that a smaller Ωm corresponds to a larger 𝜎8, and
the latter means there is more matter clustering.

Panel E shows the peak 2PCFs for 𝜈 > 4 for the same Ωm
values. Similar to the 𝜈 > 2 case, increasing Ωm decreases the
2PCF amplitude and vice versa, and the behaviour relative to the
fiducial case is asymmetric, where changing Ωm by a fixed amount
in either direction has a larger impact on the amplitude when Ωm is
decreased, suggesting that the 𝜈 > 4 catalogue is also more sensitive
to small Ωm. However, compared to the 𝜈 > 2 case, there appears
to be slightly less change to the overall slope of the 2PCF as Ωm is
varied.

Panel B is the same as the previous panels except 𝑆8 is varied
in this case. The figure shows that changes to 𝑆8 affect the amplitude
of the 2PCF, where lowering 𝑆8 lowers the 2PCF amplitude since
it corresponds to a smaller 𝜎8 (remember that Ω𝑚 is held constant
here) and therefore less clustering of matter. Increasing 𝑆8 by the
same amount increases the amplitude relative to the fiducial case,
but the magnitude of the change is slightly smaller compared to the
decreased 𝑆8 case. Panel F shows the 𝜈 > 4 2PCF for the same three
𝑆8 values. The overall trend here is the opposite to the 𝜈 > 2 case.
Initially it seems counter-intuitive that higher 𝑆8 values would lead
to a lower clustering amplitude; however, as shown by Fig. 3, the
abundance of peaks is also larger for this catalogue. Therefore, when
𝑆8 increases, the number of peaks with 𝜈 > 4 increases, meaning
that smaller maxima in the primordial density field—which are less
biased and hence less clustered tracers of the matter density field—
end up contributing to this peak catalogue, and so the clustering of
the peaks decreases and vice versa.

Panel C shows how the 2PCF for the 𝜈 > 2 catalogue depends
on ℎ. The 2PCF appears to be sensitive to changes in ℎ, where in-
creasing ℎ decreases its amplitude, and vice versa. This observation
is actually consistent with the discussion above about the physical
impact of varying ℎ—withΩm and 𝜎8 fixed—on matter clustering:
increasing ℎ from 0.7 to 0.9 weakens the late-time matter clustering
at 𝑘 . 0.1ℎMpc−1, and these are the scales most relevant for the
peak clustering (which is expected to trace the dark matter cluster-
ing) as well. Unlike the behaviour seen for Ωm and 𝑆8, changing ℎ
by a fixed amount in either direction appears to change the 2PCF
amplitude by an equal amount. Panel G shows the 𝜈 > 4 2PCF
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Figure 4. (Colour Online) The WL peak 2PCF, where each subpanel corresponds to the 2PCF of a different peak catalogue. The various peak catalogues (and
hence their 2PCF) only contain peaks with amplitudes 𝜈 > 1 (top left), 𝜈 > 2 (top right), 𝜈 > 3 (bottom left) and 𝜈 > 4 (bottom right). The curves in each
subpanel correspond to the 26 cosmo-SLICS nodes in Fig. 1, with the fiducial cosmology plotted in blue. The shaded orange regions show the 1𝜎 standard
errors measure from the 50 cosmoSLICS realisations. Note the change of 𝑦-axis range between the upper and lower sub-panels.

Figure 5. (Colour Online) The emulated peak 2PCF for two different peak catalogues, 𝜈 > 2 (top section) and 𝜈 > 4 (bottom section). The curves correspond
to the cosmological parameters [Ωm, 𝑆8, ℎ, 𝑤0] with values [0.3, 0.8, 0.7, −1.0], unless otherwise stated in the sub-panel legends. Each sub-panel corresponds
to varying one cosmological parameter at a time, as specified in the legend. The bottom rows in each section show the ratio of the curves relative to the fiducial
cosmology. The 1𝜎 standard errors measured from the 50 cosmo-SLICS realisations are shown for the fiducial cosmology by the shaded blue region.
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for the same three ℎ values. As for the case of 𝜈 > 2, the 2PCF
amplitude increases when ℎ decreases and vice versa. Indeed, the
impacts of varying ℎ are similar for both the 𝜈 > 2 and the 𝜈 > 4
catalogues, except the 𝜈 > 2 case appears to be more sensitive to ℎ
at large 𝜃.

Panel D shows the 𝜈 > 2 2PCFs for different values of 𝑤0.
Increasing 𝑤0 decreases the amplitude and vice versa, with no
apparent changes to the gradient. This behaviour also appears to be
symmetric relative to the fiducial cosmology, similar to that seen
for ℎ, and unlike Ωm and 𝑆8. Panel H is the same but shows the
𝜈 > 4 2PCF, which appears to have little sensitivity to changes in
𝑤0. In both catalogues, we think that the physical reason underlying
the 𝑤0 dependence is the same as in the case of peak abundance.
Although naively it seems that the case of 𝑤0 = −1.5—which
has faster growth of structures at late times and hence requires a
lower initial power spectrum amplitude to achieve the same 𝜎8 or
𝑆8 at 𝑧 = 0—should predict less matter clustering during the entire
lensing kernel and so lead to a lower amplitude of the peak 2PCF, we
note that this model also covers a larger volume for the same redshift
range and therefore receives contribution from a greater number of
massive haloes. Also, the peak 2PCF is a projection effect, and the
projection depth is larger for the case of 𝑤0 = −1.5, which leads
to a larger line-of-sight integration. These different effects compete
with each other and can have cancellations, which may explain why
for the 𝜈 > 4 catalogue there is almost no dependence on 𝑤0 (also
note that the same 𝜈 > 4 peak height threshold can lead to different
peak populations for the different models, which could also have an
impact on the peak correlation).

Comparing the bottom row (𝜈 > 4) to the top row (𝜈 > 2), we
see that the amplitudes of the 2PCFs are all higher. Given that fewer
tracers are used for the 𝜈 > 4 measurements, the errors on these
curves should be larger. This will be in direct competition with any
increased sensitivity to the cosmological parameters relative to the
𝜈 > 2 case. Nonetheless, separate catalogues still contain comple-
mentary information to each other regardless of which factors wins
out, as we will show later.

5 PARAMETER CONSTRAINTS FORECAST

In this section we present parameter constraint forecasts for the
statistics studied in Section 4.

Figure 6 shows the parameter constraint forecasts for an LSST-
like survey for the WL peak 2PCF. We present constraints for the
four WL peak 2PCFs measured fromWL peak catalogues with four
heights 𝜈 > 1, 2, 3 and 4, and the combination of all four 2PCFs.
The true cosmological parameter values used to generate the data
are indicated by the black point. The diagonal panels show the 1D
marginalised probability distributions, while the remaining panels
show the marginalised 2D probability contours enclosing the 68%
and 95% confidence intervals. All confidence intervals, along with
the true parameter values, are explicitly stated in the table in the top
right of the figure.

In general, as the 𝜈 threshold increases, the contour sizes start
off large (𝜈 > 1), begin to shrink (𝜈 > 2 and 𝜈 > 3), and become
large again (𝜈 > 4). The shape and orientation of the contours also
change significantly as the 𝜈 threshold increases. For example, in
the Ωm–𝑆8 plane, the 𝜈 > 3 contour is smaller than the 𝜈 > 4 con-
tour; however, the two are orthogonal to each other. This behaviour
shows that the constraining power of the WL peak 2PCF can be
significantly improved when the 2PCFs of multiple peak catalogues
are combined. Even in the case of very large contours which fully

enclose the contours from lower 𝜈 thresholds, the presence of com-
plementary information between the different 2PCFs is not ruled
out. This is because it depends not only on the size, shape and ori-
entation of the contours, but also on the correlation between the
contours. This is discussed in detail in Appendix B. The benefit to
combining multiple peak catalogues is shown by the grey contours,
which are significantly smaller than any individual contour in all
cases.

We find that the 𝜈 > 2 and 𝜈 > 3 peak 2PCFs give the tightest
constraints on Ωm, the 𝜈 > 2 and 4 2PCFs both give the similar
constraint on 𝑆8, 𝜈 > 2 and 3 are tightest on ℎ and 𝜈 > 2 gives the
best constraint on 𝑤0. It is interesting to note that the constraints
on 𝑤0 are roughly nine times smaller for the combination of all
catalogues compared to 𝜈 > 4 alone, indicating that a significant
amount of cosmological information is contained in the clustering
of low amplitude peaks.

Fig. 7 shows parameter constraint forecasts for the combination
of the peak 2PCFs similar to the black contours of Fig. 6, but now
using a finer selection from eight peak catalogues with 𝜈 > 1.0, 1.5,
..., 4.5 in orange. The constraints from the peak abundance for peaks
with heights 0 < 𝜈 < 6 are shown in blue, and the combination of
the abundance and 2PCFs are shown in green. We note that when
multiple probes are combined, it is important to account for any
duplicate information between the probes through the covariance
matrix of the data vector, including the cross correlation between
the multiple probes. The covariance matrix of all probes studied
in this work is presented in Appendix B and discussed in detail
therein. The orange contour shows how the parameter constraints
are improvedwhen the 2PCFs ofmanymoreWLpeak catalogues are
combined: constraints from the combined 2PCFs are much smaller
than the best constraints from any individual catalogue (cf. Fig. 6).
Increasing the number of catalogues used in the combined case from
four to eight, improves the constraints onΩm and 𝑆8 by roughly 30%
and 20% respectively, there is only a small improvement for ℎ, and
the 𝑤0 constraints improve by nearly a factor of two. Potentially one
could use a very large number of 𝜈 thresholds, by reducing the 𝜈
increments further, such as 𝜈 > 1.0, 1.25, ..., 4.5. However at some
point the 2PCFs from adjacent catalogues become so correlated that
there is no gain in extra information, and this significantly increases
the length of our data-vector. Our choice is a compromise between
having several 𝜈 bins that span a range of peak heights while keeping
a small enough data vector to calculate accurate covariancematrices.

The complementarity between 2PCFs with different thresh-
olds, including the potential for degeneracy breaking, is the main
factor that contributes to the strong peak 2PCF constraints, when
many catalogues are used. In the following paragraphs, we provide
a physical interpretation for this behavior.

There have been several studies on the structures that produce
weak lensing peaks (Yang et al. 2011; Liu & Haiman 2016; Wei
et al. 2018). These studies show that in general, medium-height
peaks correspond to chance alignments of multiple haloes along
the line of sight, and high amplitude peaks are often associated
with single clusters along the line of sight. Peaks created by LSS
projections will contain different cosmological information to those
created by single clusters. For the peak abundance, this can be seen
in the covariance matrix (Fig. B1, also studied in Martinet et al.
2018) where there is anti-correlation between low and high peaks.
There is a similar behavior in the peak 2PCF covariance matrix in
Fig. B2, where there is very little correlation between the 𝜈 > 1 and
𝜈 > 4 catalogues. However this feature is less pronounced, due to
adjacent catalogues sharing a large fraction of the same peaks.

Because peaks of different amplitudes are produced by dif-
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Figure 6. (Colour Online) Constraint forecasts on cosmological parameters measured from the WL peak 2PCF. Contours are shown for 2PCFs measured
from WL peak catalogues with 𝜈 > 1 (blue), 𝜈 > 2 (orange), 𝜈 > 3 (green) and 𝜈 > 4 (red) and the combination of all four catalogues (black). The true
cosmological parameter values used to generate the data are indicated by the black point. The diagonal panels show the 1Dmarginalised probability distribution,
and the remaining panels show the marginalised 2D probability contours enclosing the 68% and 95% confidence intervals. The table in the top right shows true
parameter values (top) and the inferred parameter values for the different peak catalogues with 68% (upper section) and 95% (lower section) confidence limits.

ferent types of dark matter structures, the 2PCF of each WL peak
catalogue probes slightly different regimes of the dark matter distri-
bution. By combining multiple peak catalogues with different peak
height thresholds, we essentially add additional information about
the peak height to the 2PCF.

As shown by the table in Fig. 7, the peak abundance and peak
2PCF provide similar constraints on Ωm, however the constraints
on 𝑆8 are twice as strong for the peak abundance compared to the
peak 2PCF: in the Ωm–𝑆8 plane, the peak abundance contour is
significantly tighter than the peak 2PCF contour in the 𝑆8 direction.
When the two probes are combined, there is an overall improvement
on the Ωm and 𝑆8 constraints by a factor of two, relative to the peak
abundance alone. This leads to a good overall improvement in the

Ωm–𝑆8 plane when the peak abundance and 2PCF are combined,
as shown by the green contour.

The peak 2PCF is able to constrain both ℎ and 𝑤0 with greater
accuracy than the peak abundance. There also appears to be some
orthogonality between the abundance and 2PCF constraints in the
ℎ–𝑆8 and 𝑤0–Ωm planes. In the 𝑤0–ℎ plane, the parameter con-
straints are dominated by the peak 2PCF contours, while the peak
abundance contours are significantly larger than the former. This
indicates that the peak 2PCF offers a great deal of complementary
information to the peak abundance, and combining the two probes
can significantly improve constraints in the four dimensional param-
eter space studied here. The behaviour of the constraints from peak
abundance and 2PCF, especially those on ℎ and 𝑤0, are consistent
with the observations we made above for Figs. 3 and 5.
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Figure 7. (Colour Online) The same a Fig. 6 but for the combination of eight peak 2PCFs from peak catalogues with 𝜈 > 1.0, 1.5, ..., 4.5 (orange), the peak
abundance (blue), and the combination of the two (green).

In Fig. 8 we also introduce the parameter constraint forecasts
for WL voids from Davies et al. (2020b), which are measured with
the same methodology and specifications used in this work, to com-
pare the constraining power of these two different probes. This is
important since the voids studied in Davies et al. (2020b), which
were found to be a promising void definition (Davies et al. 2020a),
are identified as underdense regions in the distribution ofWL peaks.
Thismeans that the properties ofWLvoids are likely correlatedwith
the number and clustering of peaks, and we need a joint analysis to
reveal the amount of complementary information contained in the
two probes. The forecasts from the WL voids (blue), making use of
both their abundances and tangential shear profiles, are compared
to the WL peak forecasts (orange), which combine the peak abun-
dance and peak 2PCF. We note that both the void and peak contours
presented here are for the combination of the 𝜈 > 1, 2, 3 and 4 peak
catalogues (excluding the peak abundance which does not combine
multiple catalogues). This is to provide a fair comparison between

the voids and the peaks. In principle, the void contours could be
measured for the eight catalogues used for the orange peak 2PCF
contours in Fig. 7, however this would cause our data vector to
become too large, even for our high number of SLICS realisations.

Overall, both the peaks and voids are able to measure the four
cosmological parameters with similar accuracy. The voids provide
notably tighter measurements of ℎ and 𝑤0. The void contours are
smaller than the peak contours, and follow similar degeneracy direc-
tions for all combinations of parameters. The void and peak contours
are most similar in the 𝑆8–𝑤0 plane, and most distinct in the 𝑤0–ℎ
plane. When the peaks and voids are combined (green contours),
there is a small improvement on the Ωm, 𝑆8 and ℎ measurements,
and, there is also a reasonable improvement on 𝑤0, indicating that
the WL peak and void statistics are complementary to each other.

As a comparison, we also include the forecast contours using
the standard cosmic shear 2PCFs (𝜉+ and 𝜉− combined) in grey (for
details on how these are measured, see Davies et al. 2020b). For fair
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Figure 8. (Colour Online) The same as Fig. 6, but for void statistics presented in (Davies et al. 2020b) (blue), peak statistics (orange) and the combination of
peak and void statistics (green). Both the peak and void statistics use the combination of the 𝜈 > 1, 2, 3 and 4 catalogues. Shear 2PCF forecasts are shown in
grey.

comparisons, the cosmological model dependence and covariance
matrix for these were both obtained using the same simulation data
as used for the peak and void analyses throughout this paper. For
Ωm and ℎ, WL peaks or WL voids (or both of them) give similar
constraints as the shear 2PCFs; however, for 𝑆8 and 𝑤0, the former
probes actually can place tighter constraints (for this survey spec-
ification) by roughly a factor of two, indicating again the benefit
of exploring beyond-two-point WL statistics to help maximise the
information that can be extracted. In some parameter planes, such
as 𝑆8–ℎ and ℎ–𝑤0, there is a clear orthogonality between the de-
generacy directions of the peak/void statistics and the shear 2PCFs.

6 DISCUSSION AND CONCLUSIONS

We have tested the sensitivity of the WL peak statistics to the cos-
mological parameters Ωm, 𝑆8, ℎ and 𝑤0 and compared the peak
2PCF to the peak abundance. In order to achieve this, we have
trained a Gaussian Process emulator with 26 cosmologies sampled
in the 4D parameter space using a Latin hypercube, which we used
to predict the peak statistics for arbitrary cosmologies (within the
range spanned by the training cosmologies). We have run Markov
Chain Monte Carlo samplings from our mock weak lensing data
to forecast the accuracy’s at which these four parameters can be
constrained by a future, LSST-like, lensing survey, using the above
WL peak statistics.

Using the emulators, we have studied the behaviour of the WL
peak 2PCF in detail, and made connections to the well-established
peak abundance. A main feature of our peak 2PCF analysis is that
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we generate a WL peak catalogue from the entire peak population
by introducing a peak height (𝜈) threshold, below which all peaks
are removed, and then vary this threshold to generate multiple cata-
logues. We then study the behaviour of the WL peak 2PCF of these
catalogues as this 𝜈 threshold changes.

In Marian et al. (2013), it has been shown that the WL peak
2PCF of high-amplitude peaks provides little complementary in-
formation to the peak abundance. In this work, we have presented
some additional steps that are able to further push the utility of the
WL peak 2PCF. These additional steps significantly improve the
overall constraining power of WL peaks when the abundance and
2PCFs are combined. First, we study the 2PCF of low-amplitude (𝜈)
peaks, and find that it contains significant cosmological informa-
tion compared to the 2PCF of high-amplitude peaks. For example,
in Fig. 6 the constraints on 𝑤0 are roughly four times stronger for
the 𝜈 > 2 catalogue compared to the 𝜈 > 4 catalogue. Second, we
find that the 2PCFs of multiple catalogues are complementary to
each other, and when combined, the peak 2PCF can constrain Ωm
with tighter accuracy than the peak abundance, and that it is able
to constrain both ℎ and 𝑤0 with significantly greater accuracy than
the peak abundance alone. We also find that the peak abundance
provides constraints that are twice as tight on 𝑆8 than the combined
peak 2PCF, indicating that in order to fully exploit the cosmological
information contained in WL peaks, both their abundance and their
clustering should be measured and combined. This is illustrated by
the green contours in Fig. 7, which show the total constraints from
WL peaks in which the abundance is combined with the combined
2PCF from different 𝜈 catalogues. Here, the abundance plus the
clustering forecasts are roughly twice as strong as those for either
of the individual cases (orange for 2PCF and blue for abundance).
When we compare the constraints from the peak abundance plus
the peak 2PCF to those from the shear 2PCF, we find that the peaks
are able to constrain Ωm, 𝑆8 and 𝑤0 with greater precision than
the shear 2PCF, the most significant improvement is for 𝑆8 and 𝑤0,
which improve by roughly a factor of two. Finally, the information
required to measure the peak 2PCF is already present when the peak
abundance is measured. Therefore, the addition of the peak 2PCF
to any preexisting peak abundance analysis pipeline will require
minimal modifications, making the peak 2PCF a very promising
probe.

We also include a comparison of the forecasts from WL peaks
to the WL voids studied in Davies et al. (2020b), and find that the
combination of the two can improve the constraints onΩm, 𝑆8 and ℎ,
and can provide significant improvements on the 𝑤0 measurements.
The WL voids are sensitive to the 𝑁-point correlation function of
peaks (White 1979), and the improved constraints resulting from
combining WL peaks and voids shows that three and higher-order
correlation functions in the peak distribution contain complemen-
tary cosmological information. WL voids are one simple way to
access the information contained in the higher order correlation
functions of peaks.

The improved parameter constraints from the combination of
all of the peak and void probes presented here can also be ex-
plained through their full covariance matrix, which includes cross-
correlations between probes, present in Appendix B. From the co-
variance matrix it is clear that many of the probes studied here have
a large degree of statistical independence. This leads to complemen-
tary information between the probes which yields tighter constraints
when the different probes are combined.

We highlight that the work carried out here applies to the 4D
parameter space in Fig. 1, and may change if additional parameters
in the ΛCDM model, such as the spectral index, are included. Our

results may also be sensitive to changes in curvature, massive neu-
trinos or other sources of additional physics. For example in Davies
et al. (2019b) we found that the peak abundance is sensitive to the
nDGP modified gravity model, and Liu et al. (2016) have used the
WL peak abundance to constrain 𝑓 (𝑅) gravity.

We also note that the ray-tracingmethod used to obtain ourWL
maps employs some approximations, the most important being the
Born approximation. We do not expect this simplified framework
to have affected our results. For example, Hilbert et al. (2020) have
comparedmultiple ray-tracingmethods, such as our approach versus
full techniques run on the fly at the same time as the numerical
simulation, and found very good agreement in the WL convergence
and shear power spectrum, as well as in the abundance of peaks with
heights 𝜈 < 6. Hilbert et al. have found some discrepancies between
methods in the peak abundance for 𝜈 > 6, which should not be
surprising since such peaks correspond tomassive clusters, however
such differences are unlikely to affect our results since peaks with
such high amplitudes constitute only a very small fraction of the
population even for our 𝜈 > 4 peak catalogue (e.g. see Fig. 2).
The agreement of different ray-tracing methods when predicting
the peak 2PCF remains to be studied. In this work the peak 2PCF is
measured on scales larger than 0.1 deg, so any approximations we
employed, such as the Born approximation, need to fail on similar
scales to have an impact on our measurements.

In addition, the simulations used to construct the emulators for
the different WL statistics analysed here are limited in their number
of nodes sampled with the Latin hypercube. As the results of this
paper suggest, future WL observations can place competitive con-
straints on the various cosmological parameters, with significantly
smaller contours than the current status.As the contours keep shrink-
ing around the best-fit model, improved emulators which can more
accurately capture the small effects induced by small variations of
parameters will be needed. In the future, it will be necessary to
simulate cosmological models sampled using a nested Latin hyper-
cube, or nested Latin hypercubes, to refine the emulators used in
this work.

The results presented here may be further improved with the
inclusion of tomography. This is the standard approach when using
the shear two-point correlation function to measure cosmological
parameters, and typically this significantly improves the constraints
on 𝑤0. Therefore, in a future work, we will test how cosmological
parameter constraints can be improved when using WL voids with
tomography.

Finally, in order to use the WL peak 2PCF in observations, it
will be important to understand the impact of baryonic physics, the
intrinsic alignment of galaxies, and the uncertainty associated with
photometric redshifts and shear calibration. It is already established
that theWL peak abundance is altered in presence of baryons (Osato
et al. 2015; Weiss et al. 2019; Coulton et al. 2019; Fong et al. 2019)
and intrinsic galaxy alignments (Harnois-Déraps et al. 2021), so it
will also be necessary to test how the WL peak 2PCF is affected
by these. The behaviour of these systematics will be an important
factor in determining which peak catalogues can be used to reli-
ably measure the peak 2PCF in observations. When identifyingWL
peaks in observational data, previous studies (e.g. Kacprzak et al.
2016; Martinet et al. 2018; Harnois-Déraps et al. 2020) have dis-
carded peaks with 𝜈 < 0 and 𝜈 > 4, in order to mitigate the impact
of these systematics on the peak abundance. We would expect a
similar approach to be valid for the peak 2PCF, though that remains
to be tested. Additionally, the removal of the high-amplitude peaks
that are most affected by these systematics may not change our pos-
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terior forecasts by a significant amount, since they also contribute
the least to the parameter constraints.
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Figure A1. (Colour Online) The cross validation of theWL peak abundance
emulator accuracy. One node is removed from the training set, and the
difference between the emulation (Em) and simulation (Sim) predictions of
the removed node are compared relative to the simulation standard error
(𝜎). This process is repeated for each of the 26 nodes, giving an upper
limit on the emulator accuracy. The iteration where the node for the fiducial
cosmology is removed is shown by the blue line. Dashed lines are added at
the 1𝜎 level to help guide the reader.

APPENDIX A: EMULATOR ACCURACY

In this section we present the accuracy of the peak abundance and
peak 2PCF emulator used for our cosmological forecasts.

In order to test the accuracy of the emulator, we employ a cross
validation test, which is outlined as follows. First, one node from
the training data (simulated data) is removed, and the emulator is
then trained with the remaining 25 nodes, for a given statistics. The
emulator prediction for the removed node is then calculated, and this
result is compared to the simulated version, by taking the difference
between the two and dividing it by the standard error measured in
the simulated data for that node. The above steps are repeated 25
more times, removing a different node from the training data at each
iteration. This results in measurements of the emulator accuracy at
each node, which is an upper limit, since the accuracy increases as
more training data is used, and the cross validation measurements
uses training data with one less node than the training data used in
the main analysis.

Fig. A1 shows the cross validation test forWL peak abundance.
The cross validation for the fiducial cosmology is shown in blue,
and the remaining nodes are shown in grey. The fiducial cosmology
is the node of most interest, as all posterior contours presented in
this work reside close to this region. The dashed lines delineate the
region where the accuracy of the emulator is within the standard
error of the simulated data. The blue curve shows that, for the fiducial
cosmology, the emulator is accurate to within 1𝜎, as roughly 68%
of the bins are within the 1𝜎 region. The grey curves show that the
accuracy is lower for the other nodes, and we find that the accuracy
decreases as we approach the edges of the cosmo-SLICS parameter
space. This is to be expected, as the emulator has less data to train
from for these regions. Fig. A2 is similar to Fig. A1, but shows the
percentage accuracy of the emulator for the cross validation test.
We can observe that the accuracy is within roughly 1% for 𝜈 . 3,
increasing to up to 4% at 𝜈 & 5 due to the more noisy measurement
for the high-𝜈 peaks.

Fig. A3 is the same as Fig. A1, but shows the cross validation
test for the WL peak 2PCF, for peak catalogues with heights 𝜈 > 1
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Figure A2. (ColourOnline) The same as Fig.A1, but showing the percentage
accuracy relative to the simulated predictions. The dashed lines enclose the
1% region.

(top left), 𝜈 > 2 (top right), 𝜈 > 3 (bottom left) and 𝜈 > 4 (bottom
right). The figure shows that, similar to theWL peak abundance, the
emulator is accurate to within 1𝜎 at the fiducial cosmology for the
peak 2PCF for all four catalogues. Fig. A4 is the same as Fig. A3, but
shows the percentage accuracy of the peak 2PCF emulator applied
in the cross-validation test. For the 𝜈 > 1 catalogue, the accuracy is
mostly within 10%, with a few bin at 20%. The accuracy is within
10% for the 𝜈 > 2 and 3 peak catalogues, and for 𝜈 > 4 the accuracy
is within 10% except for the final bin.

APPENDIX B: COVARIANCE

As shown by Eq. (14) we require the (inverted) covariance matrix of
the data vector in order to produce our forecasts. Within the matrix,
the diagonal elements correspond to the variance of each of the data
vector bins and the off-diagonal elements give the covariance be-
tween all possible pairs of bins.Whenmultiple probes are combined
into a single data vector, any correlated or duplicate information be-
tween the probes is accounted for by the cross covariance within the
matrix.

In Fig. B1 we present the total correlation matrix for the all
of the probes studied in this work. This corresponds to the matrix
that is used to produce the green likelihood contour in Fig. 8. We
present the correlation matrix instead of the covariance matrix, as it
allows for easier visual interpretation, which is expressed in terms
of the covariance matrix as follows

𝑅𝑖 𝑗 =
cov(𝑖, 𝑗)
𝜎𝑖𝜎𝑗

, (B1)

where 𝑅 is the correlation matrix, cov is the covariance matrix and
𝜎 is the standard deviation for a given bin.

Starting from the bottom left of the figure, the diagonal tiles
enclosed by the black lines show the correlation for the following
statistics (which are labelled with the range of peak heights used in
their identification): peak abundance (0 < 𝜈 < 6), peak 2PCF (four
catalogues with thresholds 𝜈 > 1, 2, 3, 4), and WL void abundance
andWL void tangential shear profiles where the voids are identified
using the same four peak catalogues. The remaining off-diagonal
terms show the cross-covariances between all possible combinations
of the probes.

MNRAS 000, 1–17 (2021)
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Figure A3. The same as Fig. A1 but for the WL peak 2PCFs. The four panels correspond to the WL peak 2PCFs of WL peaks with heights 𝑛𝑢 > 1 (top left),
𝜈 > 2 (top right), 𝜈 > 3 (bottom left) and 𝜈 > 4 (bottom right).
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Figure A4. The same as Fig. A3 but for the percentage accuracy relative to the simulated predictions. The dashed lines enclose the 10% region.

For the peak abundance, the figure shows that the low ampli-
tude peaks are somewhat correlatedwith other low amplitude peaks,
and a similar behaviour is present for the high amplitude peaks, as
shown by the green regions in the bottom left and top right of the
peak abundance correlation tile. There also appears to be a small
amount of anti-correlation between low and high amplitude peaks,
as shown by the dark regions in the top left and bottom right of the
tile.

For the diagonal peak 2PCF tiles, each bin in the 2PCF appears

to be correlated with all of the other bins. For the off-diagonal tiles
between the different peak 2PCFs, there is also a high amount of
correlation, which is again expected, as the main difference between
the 2PCFs is simply a change in amplitude, and all catalogues have
some fraction of their tracer population in common.

For the tiles representing the correlation between the peak
2PCFs and the WL void abundances, we see some correlation be-
tween the peak 2PCFs and the small radii WL voids (especially for
high 𝜈 thresholds). This is also to be expected since the WL voids

MNRAS 000, 1–17 (2021)
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Figure B1. (Colour Online) The correlation matrix for all probes studied in this work, which are as follows (from left to right): peak abundance (𝑑𝑛/𝑑𝜅), peak
2PCF (𝜉𝑝), void abundance (𝑑𝑛/𝑑𝑅𝑣 ) and void tangential shear profiles (𝛾𝑡 ).

are identified from a Delaunay triangulation of the peaks, which
will be sensitive to the peak clustering. It is interesting to see that
this correlation drops off as the void size increases, which may indi-
cate that higher-order clustering such as the three-point correlation
function of WL peaks dictates the abundance of large voids.

In Fig. B2 we show the correlation matrix for the peak
abundance combined with the eight peak 2PCFs with 𝜈 >

1.0, 1.5, ..., 4.5. The figure shows that, for the peak 2PCF, adja-
cent catalogues (similar 𝜈 thresholds) are highly correlated. This is
to be expected as the tracer populations are very similar for adjacent
catalogues. The correlation reduces significantly as the difference

between the 𝜈 thresholds increases, which is again expected as this
is where the tracer populations will differ the most. The low corre-
lation between the peak 2PCFs with very different 𝜈 thresholds is
a strong contribution to the improved constraining power from the
combination ofmultiple peak 2PCFs, alongside any complementary
parameter degeneracy directions.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B2. (Colour Online) The correlation matrix for the combination of the peak abundance (𝑑𝑛/𝑑𝜅) and the peak 2PCF (𝜉𝑝 , for eight catalogues with
𝜈 > 1.0, 1.5, ..., 4.5).
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