19,151 research outputs found

    Closing Thoughts

    Get PDF

    I Gotta Testify: Kanye West, Hip Hop, and the Church

    Get PDF
    The goal of this project, “I Gotta Testify: Kanye West, Hip Hop, and the Church,” is to add a new perspective to the scholarly discourse on Hip Hop and Christianity within classrooms, religious institutions, and popular culture by focusing on Kanye. We chose to focus on Kanye because he has been one of Hip Hop’s most influential artists in the past decade. Furthermore, Kanye is one of the most polarizing celebrities in America and across the globe. His music, fashion, political views, and family (which includes the Kardashians) dominate discourse on social media, blogs, television, and other forms of mass media. With the exception of Julius Bailey’s 2014 edited book, The Cultural Impact of Kanye West, there has been little scholarly work published on Kanye. Bailey’s book contained just one essay, written by Monica R. Miller, dedicated to the theme of Kanye and religion. We intended to produce a nontraditional journal issue, partly because Kanye has never adhered to traditional boundaries. We also chose this method because we wanted to provide a document suitable for both academic and popular audiences. Kanye West identifies as a Christian and primarily uses Christian themes in his music, videos, concerts, and messaging. Dr. Joshua K. Wright, Dr. Adria Y. Goldman and Dr. VaNatta S. For

    Free energy of formation of clusters of sulphuric acid and water molecules determined by guided disassembly

    Full text link
    We evaluate the grand potential of a cluster of two molecular species, equivalent to its free energy of formation from a binary vapour phase, using a nonequilibrium molecular dynamics technique where guide particles, each tethered to a molecule by a harmonic force, move apart to disassemble a cluster into its components. The mechanical work performed in an ensemble of trajectories is analysed using the Jarzynski equality to obtain a free energy of disassembly, a contribution to the cluster grand potential. We study clusters of sulphuric acid and water at 300 K, using a classical interaction scheme, and contrast two modes of guided disassembly. In one, the cluster is broken apart through simple pulling by the guide particles, but we find the trajectories tend to be mechanically irreversible. In the second approach, the guide motion and strength of tethering are modified in a way that prises the cluster apart, a procedure that seems more reversible. We construct a surface representing the cluster grand potential, and identify a critical cluster for droplet nucleation under given vapour conditions. We compare the equilibrium populations of clusters with calculations reported by Henschel et al. [J. Phys. Chem. A 118, 2599 (2014)] based on optimised quantum chemical structures

    The variability of the Crab Nebula in radio: No radio counterpart to gamma-ray flares

    Full text link
    We present new Jansky Very Large Array (VLA) radio images of the Crab Nebula at 5.5 GHz, taken at two epochs separated by 6 days about two months after a gamma-ray flare in 2012 July. We find no significant change in the Crab's radio emission localized to a region of <2 light-months in radius, either over the 6-day interval between our present observations or between the present observations and ones from 2001. Any radio counterpart to the flare has a radio luminosity of <~ 2×1042 \times 10^{-4} times that of the nebula. Comparing our images to one from 2001, we do however find changes in radio brightness, up to 10% in amplitude, which occur on decade timescales throughout the nebula. The morphology of the changes is complex suggesting both filamentary and knotty structures. The variability is stronger, and the timescales likely somewhat shorter, nearer the centre of the nebula. We further find that even with the excellent uv~coverage and signal-to-noise of the VLA, deconvolution errors are much larger than the noise, being up to 1.2% of peak brightness of the nebula in this particular case.Comment: Accepted to MNRAS; 13 pages, 6 figure

    The Quantum Interest Conjecture

    Get PDF
    Although quantum field theory allows local negative energy densities and fluxes, it also places severe restrictions upon the magnitude and extent of the negative energy. The restrictions take the form of quantum inequalities. These inequalities imply that a pulse of negative energy must not only be followed by a compensating pulse of positive energy, but that the temporal separation between the pulses is inversely proportional to their amplitude. In an earlier paper we conjectured that there is a further constraint upon a negative and positive energy delta-function pulse pair. This conjecture (the quantum interest conjecture) states that a positive energy pulse must overcompensate the negative energy pulse by an amount which is a monotonically increasing function of the pulse separation. In the present paper we prove the conjecture for massless quantized scalar fields in two and four-dimensional flat spacetime, and show that it is implied by the quantum inequalities.Comment: 17 pages, Latex, 3 figures, uses eps

    Measuring quality of perception in distributed multimedia: Verbalizers vs. imagers

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2008 ElsevierThis paper presents the results of a study which investigated the impact of cognitive styles on perceptual multimedia quality. More specifically, we examine the different preferences demonstrated by verbalizers and imagers when viewing multimedia content presented with different quality of service (QoS) levels pertaining to frame rates and color depth. Recognizing multimedia’s infotainment duality, we used the quality of perception (QoP) metric to characterize perceived quality. Results showed that in terms of low and high dynamisms clips, the frame rate at which multimedia content is displayed influences the levels of information assimilated by Imagers. Whilst black and white presentations are shown to be beneficial for both Biomodals and Imagers in order to experience enhanced levels of information assimilation, Imagers were shown to enjoy presentations in full 24-bit colour

    Quantum Inequalities for the Electromagnetic Field

    Get PDF
    A quantum inequality for the quantized electromagnetic field is developed for observers in static curved spacetimes. The quantum inequality derived is a generalized expression given by a mode function expansion of the four-vector potential, and the sampling function used to weight the energy integrals is left arbitrary up to the constraints that it be a positive, continuous function of unit area and that it decays at infinity. Examples of the quantum inequality are developed for Minkowski spacetime, Rindler spacetime and the Einstein closed universe.Comment: 19 pages, 1 table and 1 figure. RevTex styl

    What Brown saw and you can too

    Get PDF
    A discussion is given of Robert Brown's original observations of particles ejected by pollen of the plant \textit{Clarkia pulchella} undergoing what is now called Brownian motion. We consider the nature of those particles, and how he misinterpreted the Airy disc of the smallest particles to be universal organic building blocks. Relevant qualitative and quantitative investigations with a modern microscope and with a "homemade" single lens microscope similar to Brown's, are presented.Comment: 14.1 pages, 11 figures, to be published in the American Journal of Physics. This differs from the previous version only in the web site referred to in reference 3. Today, this Brownian motion web site was launched, and http://physerver.hamilton.edu/Research/Brownian/index.html, is now correc
    corecore