14 research outputs found

    Neurodevelopment Genes in Lampreys Reveal Trends for Forebrain Evolution in Craniates

    Get PDF
    The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates

    Structure and expression of three Emx genes in the dogfish Scyliorhinus canicula: functional and evolutionary implications.

    Get PDF
    We report the characterization of three Emx genes in a chondrichthyan, the dogfish Scyliorhinus canicula. Comparisons of these genes with their osteichthyan counterparts indicate that the gnathostome Emx genes belong to three distinct orthology classes, each containing one of the dogfish genes and either the tetrapod Emx1 genes (Emx1 class), the osteichthyan Emx2 genes (Emx2 class) or the zebrafish Emx1 gene (Emx3 class). While the three classes could be retrieved from the pufferfish genome data, no indication of an Emx3-related gene in tetrapods could be found in the databases, suggesting that this class may have been lost in this taxon. Expression pattern comparisons of the three dogfish Emx genes and their osteichthyan counterparts indicate that not only telencephalic, but also diencephalic Emx expression territories are highly conserved among gnathostomes. In particular, all gnathostomes share an early, dynamic phase of Emx expression, spanning presumptive dorsal diencephalic territories, which involves Emx3 in the dogfish, but another orthology class, Emx2, in tetrapods. In addition, the dogfish Emx2 gene shows a highly specific expression domain in the cephalic paraxial mesoderm from the end of gastrulation and throughout neurulation, which suggests a role in the segmentation of the cephalic mesoderm

    Roadway Interface Analysis with A Support Vector Regression Based Linear Prediction Method Using Stepped-Frequency Radar

    No full text
    IGARSS 2019, IEEE International Geoscience and Remote Sensing Symposium, Yokohama, JAPON, 28-/07/2019 - 02/08/2019Ground Penetrating Radar (GPR) is a widely used tool in the management and monitoring of pavement structures. In this paper, we focus on the detection of thin inter-layer debondings between the hot mix asphalt layers of pavement structures. A Stepped-Frequency Radar (SFR) associated with a Support Vector Regression based Linear Prediction (LP-SVR) method is used to detect thin debondings. The performance of SFR with the LP-SVR method is analyzed according to various used frequency bandwidths on the experimental data
    corecore