289 research outputs found

    An Exactly Solvable Model of Interacting Bosons

    Full text link
    We introduce a class of exactly solvable boson models. We give explicit analytic expressions for energy eigenvalues and eigenvectors for an sd-boson Hamiltonian, which is related to the SO(6) chain of the Interacting Boson Model Hamiltonian.Comment: 8 pages of LATE

    Thermal Stability of Metallic Single-Walled Carbon Nanotubes: An O(N) Tight-Binding Molecular Dynamics Simulation Study

    Full text link
    Order(N) Tight-Binding Molecular Dynamics (TBMD) simulations are performed to investigate the thermal stability of (10,10) metallic Single-Walled Carbon Nanotubes (SWCNT). Periodic boundary conditions (PBC) are applied in axial direction. Velocity Verlet algorithm along with the canonical ensemble molecular dynamics (NVT) is used to simulate the tubes at the targeted temperatures. The effects of slow and rapid temperature increases on the physical characteristics, structural stability and the energetics of the tube are investigated and compared. Simulations are carried out starting from room temperature and the temperature is raised in steps of 300K. Stability of the simulated metallic SWCNT is examined at each step before it is heated to higher temperatures. First indication of structural deformation is observed at 600K. For higher heat treatments the deformations are more pronounced and the bond breaking temperature is reached around 2500K. Gradual (slow) heating and thermal equilibrium (fast heating) methods give the value of radial thermal expansion coefficient in the temperature range between 300K-600K as 0.31x10^{-5}(1/K) and 0.089x10^{-5}(1/K), respectively. After 600K, both methods give the same value of 0.089x10^{-5}(1/K). The ratio of the total energy per atom with respect to temperature is found to be 3x10^{-4} eV/K

    A class of colliding waves in metric-affine gravity, nonmetricity and torsion shock waves

    Get PDF
    By using our recent generalization of the colliding waves concept to metric-affine gravity theories, and also our generalization of the advanced and retarded time coordinate representation in terms of Jacobi functions, we find a general class of colliding wave solutions with fourth degree polynomials in metric-affine gravity. We show that our general approach contains the standard second degree polynomials colliding wave solutions as a particular case.Comment: 13 pages, latex, to appear in J.Math.Phy

    Non-Riemannian Gravity and the Einstein-Proca System

    Get PDF
    We argue that all Einstein-Maxwell or Einstein-Proca solutions to general relativity may be used to construct a large class of solutions (involving torsion and non-metricity) to theories of non-Riemannian gravitation that have been recently discussed in the literature.Comment: 9 pages Plain Tex (No Figures), Letter to Editor Classical and Quantum Gravit

    Scalar-Induced Compactifications in Higher Dimensional Supergravities

    Get PDF
    We discuss compactifications of higher dimensional supergravities which are induced by scalars. In particular, we consider vector multiplets coupled to the supergravity multiplet in the case of D=9, 8 and D=7 minimal supergravities. These vector multiplets contain scalars, which parametrize coset spaces of the general form SO(10-D,n)/SO(10-D)xSO(n), where n is the number of vector multiplets. We discuss the compactification of the supergravity theory to D-2 dimensons, which is induced by non-trivial vacuum scalar field configurations. There are singular and non-singular solutions, which preserve half of the supersymmetries.Comment: 25 pages, JHEP

    Pleba\'nski-Demia\'nski-like solutions in metric-affine gravity

    Full text link
    We consider a (non--Riemannian) metric--affine gravity theory, in particular its nonmetricity--torsion sector ``isomorphic'' to the Einstein--Maxwell theory. We map certain Einstein--Maxwell electrovacuum solutions to it, namely the Pleba\'nski--Demia\'nski class of Petrov type D metrics.Comment: 12 pages of a LaTeX-fil

    Exactly Solvable Pairing Model Using an Extension of Richardson-Gaudin Approach

    Full text link
    We introduce a new class of exactly solvable boson pairing models using the technique of Richardson and Gaudin. Analytical expressions for all energy eigenvalues and first few energy eigenstates are given. In addition, another solution to Gaudin's equation is also mentioned. A relation with the Calogero-Sutherland model is suggested.Comment: 9 pages of Latex. In the proceedings of Blueprints for the Nucleus: From First Principles to Collective Motion: A Festschrift in Honor of Professor Bruce Barrett, Istanbul, Turkey, 17-23 May 200

    Symmetric Teleparallel Gravity: Some exact solutions and spinor couplings

    Full text link
    In this paper we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian spacetime with nonzero nonmetricity, but zero torsion and zero curvature. Firstly we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry the autoparallel curves coincides with those of the Riemannian spacetimes. Subsequently we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our lagrangian is equivalent to the Einstein-Hilbert lagrangian for certain values of coupling coefficients. Thus we arrive at calculating the field equations via independent variations. Then we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally we discuss a minimal coupling of a spin-1/2 field to STPG.Comment: Accepted for publication in the International Journal of Modern Physics

    Dark Matter Gravitational Interactions

    Full text link
    We argue that the conjectured dark mater in the Universe may be endowed with a new kind of gravitational charge that couples to a short range gravitational interaction mediated by a massive vector field. A model is constructed that assimilates this concept into ideas of current inflationary cosmology. The model is also consistent with the observed behaviour of galactic rotation curves according to Newtonian dynamics. The essential idea is that stars composed of ordinary (as opposed to dark matter) experience Newtonian forces due to the presence of an all pervading background of massive gravitationally charged cold dark matter. The novel gravitational interactions are predicted to have a significant influence on pre-inflationary cosmology. The precise details depend on the nature of a gravitational Proca interaction and the description of matter. A gravitational Proca field configuration that gives rise to attractive forces between dark matter charges of like polarity exhibits homogeneous isotropic eternal cosmologies that are free of cosmological curvature singularities thus eliminating the horizon problem associated with the standard big-bang scenario. Such solutions do however admit dense hot pre-inflationary epochs each with a characteristic scale factor that may be correlated with the dark matter density in the current era of expansion. The model is based on a theory in which a modification of Einsteinian gravity at very short distances can be expressed in terms of the gradient of the Einstein metric and the torsion of a non-Riemannian connection on the bundle of linear frames over spacetime. Indeed we demonstrate that the genesis of the model resides in a remarkable simplification that occurs when one analyses the variational equations associated with a broad class of non-Riemannian actions.Comment: 40 pages, 4 Postscript figure
    corecore