3,128 research outputs found

    Analysis of potential benefits of integrated-gasifier combined cycles for a utility system

    Get PDF
    Potential benefits of integrated gasifier combined cycle (IGCC) units were evaluated for a reference utility system by comparing long range expansion plans using IGCC units and gas turbine peakers with a plan using only state of the art steam turbine units and gas turbine peakers. Also evaluated was the importance of the benefits of individual IGCC unit characteristics, particularly unit efficiency, unit equivalent forced outage rate, and unit size. A range of IGCC units was analyzed, including cases achievable with state of the art gas turbines and cases assuming advanced gas turbine technology. All utility system expansion plans that used IGCC units showed substantial savings compared with the base expansion plan using the steam turbine units

    New features and applications of PRESTO, a computer code for the performance of regenerative, superheated steam turbine cycles

    Get PDF
    The code was designed to analyze performance at valves-wide-open design flow. The code can model conventional steam cycles as well as cycles that include such special features as process steam extraction and induction and feedwater heating by external heat sources. Convenience features and extensions to the special features were incorporated into the PRESTO code. The features are described, and detailed examples illustrating the use of both the original and the special features are given

    Three-dimensional inviscid analysis of radial turbine flow and a limited comparison with experimental data

    Get PDF
    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed

    Generation of a composite grid for turbine flows and consideration of a numerical scheme

    Get PDF
    A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions

    Economic Fundamentals and Managed Floating Exchange Rate Regime in Singapore

    Get PDF
    ¡°Pegging the Singapore dollar to a basket of currencies instead of a fixed rate to the US dollar and having a transparent system were claimed by the government of Singapore to have enabled the country to weather the Asian financial crisis better. This empirical paper reviews the claim by testing the consistency of observed Singapore dollar real exchange rate against the country¡¯s key real economic fundamentals. Employing the concept of Natural Real Equilibrium Exchange Rate (NATREX), our study finds that the real effective exchange rate has floated around the NATREX rate in 1990¡¯s. Hence, our test results support the official statement.

    Developing Technology Applications for Improving the Problem-Solving Skills of Middle School Students with Learning Disabilities

    Get PDF
    The achievement gap in mathematics education continues to be a concern in the United States. Students with disabilities (SWD) are often excluded from the general education curriculum or the least restrictive environment due to their low performance in mathematics and disability-related deficits. Legislative and professional reports have addressed the needs of SWD by promoting evidence-based math interventions using instructional technology. However, the focus of many math interventions with instructional technology has been limited to basic facts instruction or drill-and-practice routines. In this study, I developed a curriculum-based technology tool called Anchored Instruction with Technology Applications (AITA) based on pedagogical concepts of Enhanced Anchored Instruction (EAI). For more than a decade, research has shown EAI to be effective in improving the math achievement of SWD. EAI is based on situated cognition learning theory and combines multimedia-based instruction with hands-on problems in real world contexts. AITA integrates technology applications such as 3D printers with EAI curriculum for improving problem-solving skills of SWD. The study examined differential effects of AITA in resource rooms and inclusive classrooms. Results showed significant improvement in favor of AITA for SWD in both problem-solving and computation performance

    MAG3D and its application to internal flowfield analysis

    Get PDF
    MAG3D (multiblock adaptive grid, 3D) is a 3D solution-adaptive grid generation code which redistributes grid points to improve the accuracy of a flow solution without increasing the number of grid points. The code is applicable to structured grids with a multiblock topology. It is independent of the original grid generator and the flow solver. The code uses the coordinates of an initial grid and the flow solution interpolated onto the new grid. MAG3D uses a numerical mapping and potential theory to modify the grid distribution based on properties of the flow solution on the initial grid. The adaptation technique is discussed, and the capability of MAG3D is demonstrated with several internal flow examples. Advantages of using solution-adaptive grids are also shown by comparing flow solutions on adaptive grids with those on initial grids

    CloudMe forensics : a case of big-data investigation

    Get PDF
    The significant increase in the volume, variety and velocity of data complicates cloud forensic efforts, as such big data will, at some point, become computationally expensive to be fully extracted and analyzed in a timely manner. Thus, it is important for a digital forensic practitioner to have a well-rounded knowledge about the most relevant data artefacts that could be forensically recovered from the cloud product under investigation. In this paper, CloudMe, a popular cloud storage service, is studied. The types and locations of the artefacts relating to the installation and uninstallation of the client application, logging in and out, and file synchronization events from the computer desktop and mobile clients are described. Findings from this research will pave the way towards the development of tools and techniques (e.g. data mining techniques) for cloud-enabled big data endpoint forensics investigation
    corecore