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SUMMARY 

A composite grid was generated for flows in turbines. It consisted o f  the 
C-grid (or O-grid) In the immediate vicinity o f  the blade and the H-grid in the 
middle of the blade passage between the C-grids and in the upstream region. 
This new composite grid provides better smoothness, resolution, and arthogo- 
nality than any single grid for a typical turbine blade with a large camber and 
rounded leading and trailing edges. The C-H (or O-H) composite grid has an 
unusual grid point that is connected to more than four neighboring nodes in two 

- dimensions (more than six neighboring nodes in three dimensions). A finite- 
3 volume lower-upper (LU) implicit scheme to be used on this grid poses no 
-7 problem and requires no special treatment because each interior cell of this 
-i composite grid has only four neighboring cells in two dimensions (six cells in 
-’7 

I 

three dimensions). The LU implicit scheme was demonstrated to be efficient and 
robust for external flows in a broad flow regime and can be easily applied to 
internal flows and extended from two to three dimensions. 

INTRODUCTION 
rh- ------A*-- 
I I Ic y c l l c i a L l u ~ ~  o f  5 good g i l d  ‘ Is  ej jef i t ia l  t o  obttati i i i ig b y  i i umer ica ;  S i i i i u -  

lation an accurate solution for the complex fluid flow phenomena in a turbine. 
A smooth and nearly orthogonal H-grid can be generated if the turbine blades 
are thin and have only a slight camber and sharp leading and trailing edges. 
But such geometry is rare for a turbine because of the high work factor desired 
from the turbine and the mechanical factors to be considered in designing the 
blades, which usuaiiy operate at nigh temperature ana speed (ref. i j .  iurbine 
blades are often designed t o  have substantial thickness and camber and rounded 
leading and trailing edges. 
inflow turbine than in the axial turbine. A typical radial-inflow turbine 

- 

Geometries are more complicated in the radial- 
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rotor, for instance, turns the flow in 90' deflection in the meridional plane 
while simultaneously turning the flow in the blade-to-blade plane. 
sentative turbine geometries are used to examine the grid generation for tur- 
bines: a radial-inflow turbine rotor (e.g., ref. 2) and an annular turbine 
stator (e.g., ref. 3). 

Two repre- 

For a typical turbine blade no single grid offers satisfactory grid prop- 
erties in the entire rotor or stator passage. With the H-grid it is difficult 
to obtain a good boundary-layer resolution around the leading edge. 
fine meshes are used to resolve this, the number of grid points in the upstream 
region becomes excessive. With the standard 
C-grid (or 0-grid), for a typical turbine geometry, the grid becomes very 
skewed because the blades are highly cambered and the blade-to-blade grid lines 
curve sharply in the midpassage region (refs. 4 and 5). 

If very 

Thus mesh points would be wasted. 

A two-dimensional O/H patched grid used in a turbine cascade computation 
(ref. 6) shows the slope discontinuity at the 0-H grid interface and has 
extremely large-aspect-ratio meshes near the leading edge. 
scheme used in that work is a cell-centered scheme based on the Beam and Warm- 
ing approximate factorization (ref. 7). Although the flexibility of the scheme 
i s  indicated in two dimensions, its likely limitations in three dimensions sug- 
gest an alternative approach. 

The numerical 

In this study two- and three-dimensional composite grids were generated 
in an attempt to improve the grid quality in terms of smoothness, resolution, 
and orthogonality. A numerical scheme that will run on this composite grid is 
discussed. 

STANDARD GRIDS FOR TURBINE GEOMETRIES 

A three-dimensional inviscid analysis using a H-grid was performed for the 
radial-inflow turbine rotor (ref. 8). The rotor used in the analysis is shown 
in figure 1. The rotor had 12 full blades thick enough to allow internal cool- 
ing passages and trailing-edge coolant ejection. The rotor had unswept radial 
blades at the inducer inlet and large blockages resulting from the thick trail- 
ing edges. In figure 2 the rotor surface is defined by using some o f  the grid 
lines on the rotor surface. Three-dimensional meshes in the radial turbine 
passage are shown in figure 3. A s  an illustration, only a selected number of 
grid lines on a selected number of grid surfaces are shown in the figure. A 
detailed H-grid for a blade-to-blade surface is shown in figure 4(a). 
on a meridional plane is shown in figure 5(a). Nonuniform grid spacing was 
used in all three directions. The quasi-orthogonal mesh lines were clustered 
near the leading and trailing edges, as illustrated in figures 4(a) and 5(a). 
In addition, this feature was also used to position the initial upstream grid 
at any desired location with a selected number o f  orthogonal grid lines and to 
position the final downstream grid where the experimental data were measured so 
that outputs from the inviscid calculation could be directly compared with 
experimental results. In the H-grid, cusps were required at the leading and 
trailing edges to get convergence of flow solution. Figure 4(a) shows the grid 
skewness for the leading edge; figure 4(b) shows the rapid velocity change near 
the leading edge. in spite of the difficult blade geometry (i.e., thick edges, 
large trailing blockage, turning of the passage in the meridional and blade-to- 
blade directions simultaneously, etc.), the three-dimensional inviscid analysis 
predicted the flow field reasonably well in a qualitative sense. 

The mesh 

But a large 
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entropy change occurred around the leading-edge region. 
results obtained from the three-dimensional inviscid analysis, figure 5(b) 
shows secondary velocity vectors on cross-channel surfaces. 

As an example of 

A stator vane ring is shown in figure 6(a). The full annular ring con- 
sisted of 36 vanes. A sector of four vanes used to make laser anemometer meas- 
urements is shown. This vane ring was used for an annular cascade experiment 
reported in reference 3. The stator vane geometry is shown in figure 6(b). 
The vanes were untwisted, had a constant profile from hub to tip, and had a 
height of 38.10 mn and an axial chord of 38.23 mn. The vane aspect ratio and 
the solidity at the mean radius (based on axial chord) were 1.0 and 0.93, 
respectively. The stator hub-tip radius ratio was 0.85 and the tip diameter 
was 508 mm. 
trailing-edge circle. To alleviate numerical errors associated with the H-grid 
skewness for the blunt leading edge, a standard C-grid was generated to examine 
any possible advantage over the H-grid for this turbine vane geometry 
(fig. 7(a)). The grid shows large skewing on the suction side of the blade 
passage (fig. 7(b)). Results of numerical simulations using this grid are 
likely to be affected by the grid skewing, as indicated in references 5 and 6. 

The stacking axis of the vane was located at the center of the 

COMPOSITE GRID 

Two- and three-dimensional composlte grids were generated for the turbine 
vanes of reference 3 (figs. 8(a) and (b), respectively). The blades were 
untwisted and stacked at the trailing edge (fig. 8(c)). Only a selected number 
of grid lines are shown for illustration. This composite grid consists of the 
C-grid (or 0-grid) in the imnediate vicinity of the blades and the H-grid in 
the upstream region and in the middle of the blade passage between the C-grids. 
The C-grid (or 0-grid) portion can be generated by using either the elliptic 
method (ref. 9) or the algebraic method (ref. 10). At the C-grid and H-grid 
interface (or 0-H interface) the slope continuity was preserved so that no 
special numerical approximations are needed for the derivatives at the inter- 
face. The C-grid (or 0-grid) Is orthogonal to the blade surface and provides a 
good boundary-layer resolution near the leading edge. This composite grid has 
better smoothness, resolution, and orthogonality than any type of single grid 
for a typical turbine blade with large camber and rounded leading and trailing 
edges. 

For the two-dimensional grid in figure 8(a) the C-grid in the vicinity of 
the blade was generated by the elliptic grid generation code (ref. 11). Only a 
portion of the C-grid near the blade was retained for the composite grid. In 
the C-grid shown in figure 9, for instance, the portion between n = 0 and 
n = nc < Omax was retained, where q = 0 and n = nmax are Inner arid outer 
boundaries, respectively, and choice of nc is arbitrary and depends on the 
extent of the shear flow region. Then the H-grid was smoothly patched with the 
C-grids on the pressure and suction sides. At the C-H interface the slope con- 
tinuity was preserved. The cubic spline and a stretching function were used to 
generate the H-grid in the midpassage and upstream regions. The three- 
dimensional grid in figure 8(b) was constructed algebralcally from the two- 
dimensional composite grids of the hub and shroud surfaces. 
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NUMERICAL SCHEME 

Semidiscrete Finite-Volume Scheme 
I 

The two-dimensional C-H composite grid has an unusual grid point that is 
connected to more than four neighboring nodes (fig. 10(a)). At this point the 
usual differencing techniques cannot be applied. If a standard finite- 
difference scheme were used to solve a flow problem on this composite grid, it 
would be difficult t o  treat this special point. A finite-volume scheme 
(ref. 12) to be used with this composite grid presents no problem and requires 
no special treatment because each interior cell of this composite grid has only 
four neighboring cells in two dimensions and six neighboring cells in three 
dimensions (fig. 10(b)). The finite-volume scheme is described briefly here. 

The Euler equations in integral form can be written as 

a l f l w  dn + f l E .  dS = 0 
at n an 

for a fixed region n with boundary an. Here w represents the 
conserved quantity, E is the corresponding flux term, and t is time. 

A convenient way to ensure a steady-state solution independent of the time 
In the semi- step is to separate the space and time discretization procedures. 

discrete finite-volume scheme one begins by applying a semidiscretization in 
which only the spatial derivatives are approximated. To derive a semidiscrete 
model that can be used to treat complex geometric domains, the computational 
domain is divided into quadrilateral cells. Assuming that the dependent vari- 
ables are known at the center of each cell, a system of ordinary differential 
equations is obtained by applying equation (1) separately to each cell. These 
have the form 

( 2 )  
d E (SIjuij) + Qij = 0 

where Sij is the cell area and Qjj is the net flux out of the cell. 
This can be evaluated as 

4 

where fk and gk denote values of the flux vectors f and 9 on the kth 
edge, bxk and Ayk are the increments of x and y along the edge with 
appropriate signs, and the sum is over the four sides of the cell. The flux 
vectors are evaluated by averaging the values in the cells on either side of 
the edge: 

1 - 
fl = 2 (fi+l,j + fi,j) 

for example. The scheme constructed in this manner reduces to a central 
difference scheme on a Cartesian grid and is second-order accurate in space 
provided that the mesh is smooth enough. It also has the property that uniform 
flow is an exact solution of the difference equations. 
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LU I m p l l c i t  Scheme 

The composite g r i d  i s  generated t o  be used f o r  both i n v i s c i d  and viscous 
f l ow  ca l cu la t i ons .  
f i n e  t o  reso lve  the  boundary l a y e r .  And i t  i s  l i k e l y  t h a t  t he  t i m e  step 
imposed by an e x p l i c i t  s t a b i l i t y  bound w i l l  be much less  than t h a t  imposed by 
t h e  accuracy bound o f  an i m p l i c i t  scheme. Since an obvious way t o  acce le ra te  
convergence t o  a steady s t a t e  i s  t o  increase t h e  s i z e  o f  t h e  t ime step, an 
i m p l i c i t  scheme i s  expected t o  have a f a s t e r  convergence. 
n a t i n g  d i r e c t i o n  i m p l i c i t  ( A D I )  scheme has been va luab le  i n  two-dimensional 
problems, i t s  inherent  l i m i t a t i o n s  I n  th ree  dimensions suggest an a l t e r n a t i v e  
approach. 
robust  f o r  ex te rna l  f lows i n  a broad f low regime and can be r e a d i l y  extended 
f rom two t o  th ree  dimensions. This  scheme, b r i e f l y  discussed here, w i l l  be 
used f o r  t h e  numerical  s imu la t i on  o f  t u rb ine  f lows. 

For viscous ca l cu la t i ons  the  C-  o r  0-meshes must be very 

Although the  a l t e r -  

A LU i m p l i c i t  scheme ( r e f .  13) was demonstrated t o  be e f f i c i e n t  and 

The conservat ion law form o f  t he  Euler equations i n  Car tes ian coord inates 
f o r  two-dimensional f l o w  i s  

where i s  t h e  vector  o f  dependent var iab les  and f. and fi are  convect ive 
f l u x  vectors :  

T !!! = (P,PU,PV,PE) 

where p, u, v, E, and p a r e  dens i ty ,  v e l o c i t y  components, t o t a l  energy, and 
pressure. The pressure i s  obtained f r o m  t h e  equat ion o f  s t a t e  

where y i s  t he  r a t i o  o f  heat capaci ty  a t  constant  pressure t o  heat capac i ty  
a t  constant  volume. 
aN/at = 0, where t denotes t ime. 

These equations are t o  be solved f o r  a s teady-state 

Let  t h e  Jacobian matr ices be 

and l e t  t h e  c o r r e c t i o n  be 

n t l  aq? = w - yn 
where n denotes the  t ime l e v e l .  

The l i n e a r i z e d  i m p l i c i t  scheme f o r  a system o f  non l inear  hyperbo l i c  
equations such as t h e  Euler  equations can be formulated as 
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r 1 
+ B At (DxA + D 8) 6w t At = 0 

y l  
(7) 

where I is the identity matrix and is the residual 

Here D x  and Dy are central difference operators that approximate a/ax 
and a/ay. 

If B = 1/2 the scheme remains second-order accurate in time; for other 
values of B the time accuracy drops to first order. The unfactored implicit 
scheme (eq. (7)) produces a large block-banded matrix, which is very costly to 
invert and requires huge storage. 
that has error terms at most of order (At)2 in any number of space dimen- 
sions can be derived by LU factorization 

An unconditionally stable implicit scheme 

where D-, and Dy are backward difference operators and D i  and DP 
are forward difference operators. 
diagonal dominance of lower and upper factors as well as to make use of the 
built-in implicit dissipation. 

The reason for splitting is to ensure the 

Here A+, A-, E+, and 8- are constructed so that the eigenvalues of "+" 
matrices are nonnegative and those of ''-" matrices are nonpositive. 

- 1  
A = 2 (A - rAI) 1 

A t  = 2 (A + rAI), 

where 

Here ILA and AB represent eigenvalues of Jacobian matrices. Equation (8) 
can be inverted in two steps. The LU implicit scheme needs the inversion of 
sparse triangular matrices, which can be done efficiently without using large 
storage. This scheme has only two factors in three dimensions. 

CONCLUDING REMARKS 

Two- and three-dimensional composite grids were generated in an attempt to 
improve grid quality in terms of smoothness, resolution, and orthogonality for 
an annular turbine cascade. 
0-type) grid in the immediate vicinity of the turbine blade, provides a good 
boundary-layer resolution around the leading-edge region for viscous calcula- 
tion, has orthogonality at the blade surface and slope continuity at the C-H 
(or 0-H) Interface, and controls mesh distribution in the upstream region with- 
out using excessive grid points. This composite grid eliminates the undesir- 
able qualities of a single grid when generated for a typical turbine geometry. 

This composite grid, which has a C-type (or 

A finite-volume lower-upper (Lu) implicit scheme can be used in solving 
This grid has a special grid node for the turbine flows on the composite grid. 
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that is connected to more than four neighboring nodes in two dimensions and to 
more than six nodes in three dimensions. But the finite-volume approach poses 
no problem at the special point because each interior cell has only four 
neighboring cells in two dimensions and only six cells in three dimensions. 
The LU implicit scheme was proved to be efficient in a broad flow regime and is 
expected to yield accurate solutions on the improved composite grid. 
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Figure l. - Radial inflow turbine rotor. 
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Figure 3. - Three-dimensional meshes i n  radial turbine passage. 
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(a) Grids on blade-to-blade surface. 
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(b) Relative critical velocity ratios on midspan blade-to-blade surface. 

Figure 4 - Velocity contours on blade-to-blade surface (from threedimensional 
inviscid computation). 
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(b) Secondary velocity vectors on cross-channel surfaces. 

Figure 5. - Evolution of passage wrtex (from three-dimensional inviscid computation). 
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Figure 6. - Core lurbine stator vane. 
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(b) Two dimensions. 

Figure 7. - Concluded. 



(a) Two dimensions. 

Figure 8, - Composite grid for turbine stator vanes of annular cascadc. 
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Figure 9. - Standard two-dimensional C-grid for turbine stator vanes of annular cascade, with t and 5)  coor- 
dinates shown. 



(a) Grid nodes to be used in finitedifference scheme. 

(bl Cell centers to be used in finite-volume scheme. 

Figure 10. - Special point of composite grid. 



1. Report No. NASA TM-auuru 
USAAVSCOM-TR-86-C-38 

17. Key Words (Suggested by Author(s)) 

2. Government Accession No. 
nnnnn 

4. Title and Subtitle 

18. Distribution Statement 1 

Generation of a Composite Grid for Turbine Flows and 
Consideration of a Numerical Scheme 

19 Security Classif (of this report) 20 Security Classif (of this page) 21 No of pages 

Unclassified Unclassified 

7. Author@) 

Y. Choo, S. Yoon, and C. Reno 

22 Price' 

9. Performing Organization Name and Address 

NASA Lewis Research Center and Propulsion Directorate, 
U . S .  Army Aviation Research and Technology Activity - 
AVSCOM, Cleveland, Ohio 44135 

2. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, D.C. 20546 and U.S. Army Aviation 
Systems Command, St. Louis, Mo 63120 

5 .  Supplementary Notes 

3. Recipient's Catalog No 

5 .  Report Date 

November 1986 
6. Performing Organization Code 

8. Performing Organizatlon Report NG 

E-3301 
10. Work Unit No. 

11. Contract or Grant No. 

13. Type of Report and Period Covered 

Technical Memorandum 
14, Sponsoring Agency Code 

Y. Choo, Lewis Research Center; S. Yoon, Sverdrup Technology, Inc., Lewis 
Research Center, Cleveland, Ohio 44135; C. Reno, Summer Faculty Fellow, 
Propulsion Directorate, U.S. Army Aviation Research and Technology Activity - 
AVSCOM. 

6 Abstract 

A composite grid was generated for flows in turbines. It consisted of the C-grid 1 

(or 0-grid) In the immediate vicinity of the blade and the H-grid in the middle 
of the blade passage between the C-grids and in the upstream region. lhls new 
composite grid provides better smoothness, resolution, and orthogonality than any 
single grid for a typical turbine blade with a large camber and rounded leading I 
and trailing edges. The C-H (or 0-H) composite grid has an unusual grid point 
that is connected to more than four neighboring nodes in two dimensions (more 
than six neighboring nodes in three dimensions). A finite-volume lower-upper 
(LU) implicit scheme to be used on this grid poses no problem and requires no 
special treatment because each interior cell of this composite grid has only four 1 
neighboring cells in two dimenslons (six cells in three dimensions). The LU I 

implicit scheme was demonstrated to be efficient and robust for external flows in 1 
a broad flow regime and can be easily applied t o  internal flows and extended from 1 

I 
I 

two to three dimensions. 

, 
I 

I 

i 

Grid generation 
Numerical scheme 
Turbomachinery 

Unclassified - unlimited 
STAR Category 02 


