617 research outputs found

    Linear Superiorization for Infeasible Linear Programming

    Full text link
    Linear superiorization (abbreviated: LinSup) considers linear programming (LP) problems wherein the constraints as well as the objective function are linear. It allows to steer the iterates of a feasibility-seeking iterative process toward feasible points that have lower (not necessarily minimal) values of the objective function than points that would have been reached by the same feasiblity-seeking iterative process without superiorization. Using a feasibility-seeking iterative process that converges even if the linear feasible set is empty, LinSup generates an iterative sequence that converges to a point that minimizes a proximity function which measures the linear constraints violation. In addition, due to LinSup's repeated objective function reduction steps such a point will most probably have a reduced objective function value. We present an exploratory experimental result that illustrates the behavior of LinSup on an infeasible LP problem.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0653

    Convergence and Perturbation Resilience of Dynamic String-Averaging Projection Methods

    Full text link
    We consider the convex feasibility problem (CFP) in Hilbert space and concentrate on the study of string-averaging projection (SAP) methods for the CFP, analyzing their convergence and their perturbation resilience. In the past, SAP methods were formulated with a single predetermined set of strings and a single predetermined set of weights. Here we extend the scope of the family of SAP methods to allow iteration-index-dependent variable strings and weights and term such methods dynamic string-averaging projection (DSAP) methods. The bounded perturbation resilience of DSAP methods is relevant and important for their possible use in the framework of the recently developed superiorization heuristic methodology for constrained minimization problems.Comment: Computational Optimization and Applications, accepted for publicatio

    String-Averaging Projected Subgradient Methods for Constrained Minimization

    Full text link
    We consider constrained minimization problems and propose to replace the projection onto the entire feasible region, required in the Projected Subgradient Method (PSM), by projections onto the individual sets whose intersection forms the entire feasible region. Specifically, we propose to perform such projections onto the individual sets in an algorithmic regime of a feasibility-seeking iterative projection method. For this purpose we use the recently developed family of Dynamic String-Averaging Projection (DSAP) methods wherein iteration-index-dependent variable strings and variable weights are permitted. This gives rise to an algorithmic scheme that generalizes, from the algorithmic structural point of view, earlier work of Helou Neto and De Pierro, of Nedi\'c, of Nurminski, and of Ram et al.Comment: Optimization Methods and Software, accepted for publicatio

    Bounded perturbation resilience of projected scaled gradient methods

    Full text link
    We investigate projected scaled gradient (PSG) methods for convex minimization problems. These methods perform a descent step along a diagonally scaled gradient direction followed by a feasibility regaining step via orthogonal projection onto the constraint set. This constitutes a generalized algorithmic structure that encompasses as special cases the gradient projection method, the projected Newton method, the projected Landweber-type methods and the generalized Expectation-Maximization (EM)-type methods. We prove the convergence of the PSG methods in the presence of bounded perturbations. This resilience to bounded perturbations is relevant to the ability to apply the recently developed superiorization methodology to PSG methods, in particular to the EM algorithm.Comment: Computational Optimization and Applications, accepted for publicatio

    Transfer function restoration in 3D electron microscopy via iterative data refinement

    Full text link
    Three-dimensional electron microscopy (3D-EM) is a powerful tool for visualizing complex biological systems. As with any other imaging device, the electron microscope introduces a transfer function (called in this field the contrast transfer function, CTF) into the image acquisition process that modulates the various frequencies of the signal. Thus, the 3D reconstructions performed with these CTF-affected projections are also affected by an implicit 3D transfer function. For high-resolution electron microscopy, the effect of the CTF is quite dramatic and limits severely the achievable resolution. In this work we make use of the iterative data refinement (IDR) technique to ameliorate the effect of the CTF. It is demonstrated that the approach can be successfully applied to noisy data.Partial support is acknowledged to the Comisión Interministerial de Ciencia y Tecnología of Spain through projects BIO98-0761 and BIO2001-1237 and to National Institutes of Health through grant HL70472. The work of Y. Censor was done in part at the Center for Computational Mathematics and Scientific Computation (CCMSC) at the University of Haifa and supported by Research Grant 592/00 from the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities

    Computing in Additive Networks with Bounded-Information Codes

    Full text link
    This paper studies the theory of the additive wireless network model, in which the received signal is abstracted as an addition of the transmitted signals. Our central observation is that the crucial challenge for computing in this model is not high contention, as assumed previously, but rather guaranteeing a bounded amount of \emph{information} in each neighborhood per round, a property that we show is achievable using a new random coding technique. Technically, we provide efficient algorithms for fundamental distributed tasks in additive networks, such as solving various symmetry breaking problems, approximating network parameters, and solving an \emph{asymmetry revealing} problem such as computing a maximal input. The key method used is a novel random coding technique that allows a node to successfully decode the received information, as long as it does not contain too many distinct values. We then design our algorithms to produce a limited amount of information in each neighborhood in order to leverage our enriched toolbox for computing in additive networks

    Constructive updating/downdating of oblique projectors: a generalization of the Gram-Schmidt process

    Get PDF
    A generalization of the Gram-Schmidt procedure is achieved by providing equations for updating and downdating oblique projectors. The work is motivated by the problem of adaptive signal representation outside the orthogonal basis setting. The proposed techniques are shown to be relevant to the problem of discriminating signals produced by different phenomena when the order of the signal model needs to be adjusted.Comment: As it will appear in Journal of Physics A: Mathematical and Theoretical (2007

    Existence and approximation of fixed points of right Bregman nonexpansive operators

    Get PDF
    We study the existence and approximation of fixed points of right Bregman nonexpansive operators in reflexive Banach space. We present, in particular, necessary and sufficient conditions for the existence of fixed points and an implicit scheme for approximating them
    corecore