197 research outputs found

    Half-Integral Spin-Singlet Quantum Hall Effect

    Full text link
    We provide numerical evidence that the ground state of a short range interaction model at ν=1/2\nu=1/2 is incompressible and spin-singlet for a wide range of repulsive interactions. Furthermore it is accurately described by a trial wave function studied earlier. For the Coulomb interaction we find that this wave function provides a good description of the lowest lying spin-singlet state, and propose that fractional quantum Hall effect would occur at ν=1/2\nu=1/2 if this state became the global ground state.Comment: Latex 13 pages, 3 figures upon reques

    Quantum Hall effect in single wide quantum wells

    Full text link
    We study the quantum Hall states in the lowest Landau level for a single wide quantum well. Due to a separation of charges to opposite sides of the well, a single wide well can be modelled as an effective two level system. We provide numerical evidence of the existence of a phase transition from an incompressible to a compressible state as the electron density is increased for specific well width. Our numerical results show a critical electron density which depends on well width, beyond which a transition incompressible double layer quantum Hall state to a mono-layer compressible state occurs. We also calculate the related phase boundary corresponding to destruction of the collective mode energy gap. We show that the effective tunneling term and the interlayer separation are both renormalised by the strong magnetic field. We also exploite the local density functional techniques in the presence of strong magnetic field at ν=1\nu=1 to calculate renormalized ΔSAS\Delta_{SAS}. The numerical results shows good agreement between many-body calculations and local density functional techniques in the presence of a strong magnetic field at ν=1\nu=1. we also discuss implications of this work on the ν=1/2\nu=1/2 incompressible state observed in SWQW.Comment: 30 pages, 7 figures (figures are not included

    Nonperturbative XY-model approach to strong coupling superconductivity in two and three dimensions

    Full text link
    For an electron gas with delta-function attraction we investigate the crossover from weak- to strong-coupling supercoductivity in two and three dimensions. We derive analytic expressions for the stiffness of phase fluctuations and set up effective XY-models which serve to determine nonperturbatively the temperature of phase decoherence where superconductivity breaks down. We find the transition temperature T_c as a monotonous function of the coupling strength and carrier density both in two and three dimensions, and give analytic formulas for the merging of the temperature of phase decoherence with the temperature of pair formation in the weak-coupling limit.Comment: Few typos corrected. Emails that were sent to the address [email protected] in June and July 1999 were lost in a computer crash, so if your comments were not answered please send them once mor

    Fermionic Chern-Simons theory for the Fractional Quantum Hall Effect in Bilayers

    Full text link
    We generalize the fermion Chern-Simons theory for the Fractional Hall Effect (FQHE) which we developed before, to the case of bilayer systems. We study the complete dynamic response of these systems and predict the experimentally accessible optical properties. In general, for the so called (m,m,n)(m, m, n) states, we find that the spectrum of collective excitations has a gap, and the wave function has the Jastrow-Slater form, with the exponents determined by the coefficients mm, and nn. We also find that the (m,m,m)(m,m,m) states, {\it i.~e.~}, those states whose filling fraction is 1m1\over m, have a gapless mode which may be related with the spontaneous appearance of the interlayer coherence. Our results also indicate that the gapless mode makes a contribution to the wave function of the (m,m,m)(m,m,m) states analogous to the phonon contribution to the wave function of superfluid He4\rm{He}_4. We calculate the Hall conductance, and the charge and statistics of the quasiparticles. We also present an SU(2)SU(2) generalization of this theory relevant to spin unpolarized or partially polarized single layers.Comment: 55 pages, Urbana Prepin

    Spontaneous Interlayer Coherence in Double-Layer Quantum Hall Systems: Symmetry Breaking Interactions, In-Plane Fields and Phase Solitons

    Full text link
    At strong magnetic fields double-layer two-dimensional-electron-gas systems can form an unusual broken symmetry state with spontaneous inter-layer phase coherence. The system can be mapped to an equivalent system of pseudospin 1/21/2 particles with pseudospin-dependent interactions and easy-plane magnetic order. In this paper we discuss how the presence of a weak interlayer tunneling term alters the properties of double-layer systems when the broken symmetry is present. We use the energy functional and equations of motion derived earlier to evaluate the zero-temperature response functions of the double-layer system and use our results to discuss analogies between this system and Josephson-coupled superconducting films. We also present a qualitative picture of the low-energy charged excitations of this system. We show that parallel fields induce a highly collective phase transition to an incommensurate state with broken translational symmetry.Comment: 26 pages, RevTex, 8 postscript figures (submitted to Phys. Rev. B

    Two - Dimensional Electron Liquid in a Weak Magnetic Field

    Full text link
    We present an effective theory describing the low-energy properties of an interacting 2D electron gas at large non-integer filling factors ν1\nu\gg 1. Assuming that the interaction is sufficiently weak, rs<1r_s < 1, we integrate out all the fast degrees of freedom, and derive the effective Hamiltonian acting in the Fock space of the partially filled Landau level only. This theory enables us to find two energy scales controlling the electron dynamics at energies less than ωc\hbar\omega_c. The first energy scale, (ωc/ν)ln(νrs)(\hbar\omega_c/\nu)\ln\left(\nu r_s\right), appears in the one electron spectral density as the width of a pseudogap. The second scale, rsωcr_s\hbar\omega_c, is parametrically larger; it characterizes the exchange-enhanced spin splitting and the thermodynamic density of states.Comment: Submitted in Phys. Rev. B, 30 pages, 3 figures upon reques

    Superconducting transitions from the pseudogap state: d-wave symmetry, lattice, and low-dimensional effects

    Full text link
    We investigate the behavior of the superconducting transition temperature within a previously developed BCS-Bose Einstein crossover picture. This picture, based on a decoupling scheme of Kadanoff and Martin, further extended by Patton, can be used to derive a simple form for the superconducting transition temperature in the presence of a pseudogap. We extend previous work which addressed the case of s-wave pairing in jellium, to explore the solutions for T_c as a function of variable coupling in more physically relevant situations. We thereby ascertain the effects of reduced dimensionality, periodic lattices and a d-wave pairing interaction. Implications for the cuprate superconductors are discussed.Comment: REVTeX, 11 pages, 6 EPS figures included, Replace with published versio

    Identification of distinct subgroups of Sj\uf6gren\u27s disease by cluster analysis based on clinical and biological manifestations: data from the cross-sectional Paris-Saclay and the prospective ASSESS cohorts

    Get PDF
    \ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: Sj\uf6gren\u27s disease is a heterogenous autoimmune disease with a wide range of symptoms—including dryness, fatigue, and pain—in addition to systemic manifestations and an increased risk of lymphoma. We aimed to identify distinct subgroups of the disease, using cluster analysis based on subjective symptoms and clinical and biological manifestations, and to compare the prognoses of patients in these subgroups. Methods: This study included patients with Sj\uf6gren\u27s disease from two independent cohorts in France: the cross-sectional Paris-Saclay cohort and the prospective Assessment of Systemic Signs and Evolution of Sj\uf6gren\u27s Syndrome (ASSESS) cohort. We first used an unsupervised multiple correspondence analysis to identify clusters within the Paris-Saclay cohort using 26 variables comprising patient-reported symptoms and clinical and biological manifestations. Next, we validated these clusters using patients from the ASSESS cohort. Changes in disease activity (measured by the European Alliance of Associations for Rheumatology [EULAR] Sj\uf6gren\u27s Syndrome Disease Activity Index [ESSDAI]), patient-acceptable symptom state (measured by the EULAR Sj\uf6gren\u27s Syndrome Patient Reported Index [ESSPRI]), and lymphoma incidence during follow-up were compared between clusters. Finally, we compared our clusters with the symptom-based subgroups previously described by Tarn and colleagues. Findings: 534 patients from the Paris-Saclay cohort (502 [94%] women, 32 [6%] men, median age 54 years [IQR 43–64]), recruited between 1999 and 2022, and 395 patients from the ASSESS cohort (370 [94%] women, 25 [6%] men, median age 53 years [43–63]), recruited between 2006 and 2009, were included in this study. In both cohorts, hierarchical cluster analysis revealed three distinct subgroups of patients: those with B-cell active disease and low symptom burden (BALS), those with high systemic disease activity (HSA), and those with low systemic disease activity and high symptom burden (LSAHS). During follow-up in the ASSESS cohort, disease activity and symptom states worsened for patients in the BALS cluster (67 [36%] of 186 patients with ESSPRI score &lt;5 at month 60 vs 92 [49%] of 186 at inclusion; p&lt;0\ub70001). Lymphomas occurred in patients in the BALS cluster (five [3%] of 186 patients; diagnosed a median of 70 months [IQR 42–104] after inclusion) and the HSA cluster (six [4%] of 158 patients; diagnosed 23 months [13–83] after inclusion). All patients from the Paris-Saclay cohort with a history of lymphoma were in the BALS and HSA clusters. This unsupervised clustering classification based on symptoms and clinical and biological manifestations did not correlate with a previous classification based on symptoms only. Interpretation: On the basis of symptoms and clinical and biological manifestations, we identified three distinct subgroups of patients with Sj\uf6gren\u27s disease with different prognoses. Our results suggest that these subgroups represent different heterogeneous pathophysiological disease mechanisms, stages of disease, or both. These findings could be of interest when stratifying patients in future therapeutic trials. Funding: Fondation pour la Recherche M\ue9dicale, French Ministry of Health, French Society of Rheumatology, Innovative Medicines Initiative 2 Joint Undertaking, Medical Research Council UK, and Foundation for Research in Rheumatology

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    Cross-species amplification of 41 microsatellites in European cyprinids: A tool for evolutionary, population genetics and hybridization studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyprinids display the most abundant and widespread species among the European freshwater Teleostei and are known to hybridize quite commonly. Nevertheless, a limited number of markers for conducting comparative differentiation, evolutionary and hybridization dynamics studies are available to date.</p> <p>Findings</p> <p>Five multiplex PCR sets were optimized in order to assay 41 cyprinid-specific polymorphic microsatellite loci (including 10 novel loci isolated from <it>Chondrostoma nasus nasus, Chondrostoma toxostoma toxostoma </it>and <it>Leuciscus leuciscus</it>) for 503 individuals (440 purebred specimens and 63 hybrids) from 15 European cyprinid species. The level of genetic diversity was assessed in <it>Alburnus alburnus, Alburnoides bipunctatus, C. genei, C. n. nasus, C. soetta, C. t. toxostoma, L. idus, L. leuciscus, Pachychilon pictum, Rutilus rutilus, Squalius cephalus </it>and <it>Telestes souffia</it>. The applicability of the markers was also tested on <it>Abramis brama, Blicca bjoerkna </it>and <it>Scardinius erythrophtalmus </it>specimens. Overall, between 24 and 37 of these markers revealed polymorphic for the investigated species and 23 markers amplified for all the 15 European cyprinid species.</p> <p>Conclusions</p> <p>The developed set of markers demonstrated its performance in discriminating European cyprinid species. Furthermore, it allowed detecting and characterizing hybrid individuals. These microsatellites will therefore be useful to perform comparative evolutionary and population genetics studies dealing with European cyprinids, what is of particular interest in conservation issues and constitutes a tool of choice to conduct hybridization studies.</p
    corecore