614 research outputs found
Revaluasi Aset Untuk Tujuan Perpajakan, Ambil Atau Jangan
The Government has launched a policy of taxation through the Minister of Finance numbered 191/PMK.010/2015 on Revaluation of Fixed Assets Proposed in the Year 2015 and 2016. Impact of revaluation, automatically has consequences to the increase on depreciation expenses of fixed assets are charged to the profit and loss next period, so company will have benefit from the revaluation of these assets. But Fixed Assets Revaluation for tax purposes is not free. There are taxes to be paid, especially if the asset after revaluation is sold to a third party, then the taxpayer will be charged as additional income tax. If the company still wants to take the program of the asset revaluation, fixed assets after the revaluation prohibited for sale to another party until the depreciation of assets ending
Group Chase and Escape
We describe here a new concept of one group chasing another, called "group
chase and escape", by presenting a simple model. We will show that even a
simple model can demonstrate rather rich and complex behavior. In particular,
there are cases in which an optimal number of chasers exists for a given number
of escapees (or targets) to minimize the cost of catching all targets. We have
also found an indication of self-organized spatial structures formed by both
groups.Comment: 13 pages, 12 figures, accepted and to appear in New Journal of
Physic
Chiral Modulations in Curved Space I: Formalism
The goal of this paper is to present a formalism that allows to handle
four-fermion effective theories at finite temperature and density in curved
space. The formalism is based on the use of the effective action and zeta
function regularization, supports the inclusion of inhomogeneous and
anisotropic phases. One of the key points of the method is the use of a
non-perturbative ansatz for the heat-kernel that returns the effective action
in partially resummed form, providing a way to go beyond the approximations
based on the Ginzburg-Landau expansion for the partition function. The
effective action for the case of ultra-static Riemannian spacetimes with
compact spatial section is discussed in general and a series representation,
valid when the chemical potential satisfies a certain constraint, is derived.
To see the formalism at work, we consider the case of static Einstein spaces at
zero chemical potential. Although in this case we expect inhomogeneous phases
to occur only as meta-stable states, the problem is complex enough and allows
to illustrate how to implement numerical studies of inhomogeneous phases in
curved space. Finally, we extend the formalism to include arbitrary chemical
potentials and obtain the analytical continuation of the effective action in
curved space.Comment: 22 pages, 3 figures; version to appear in JHE
Synthesis, XRD and HS-Analysis
An efficient microwave-assisted one-step synthetic route toward Mannich bases is developed from 4-hydroxyacetophenone and different secondary amines in quantitative yields, via a regioselective substitution reaction. The reaction takes a short time and is non-catalyzed and reproducible on a gram scale. The environmentally benign methodology provides a novel alternative, to the conventional methodologies, for the synthesis of mono- and disubstituted Mannich bases of 4-hydroxyacetophenone. All compounds were well-characterized by FT-IR, 1H NMR, 13C NMR, and mass spectrometry. The structures of 1-{4-hydroxy-3-[(morpholin-4-yl)methyl]phenyl}ethan-1-one (2a) and 1-{4-hydroxy-3-[(pyrrolidin-1-yl)methyl]phenyl}ethan-1-one (3a) were determined by single crystal X-ray crystallography. Compound 2a and 3a crystallize in monoclinic, P21/n, and orthorhombic, Pbca, respectively. The most characteristic features of the molecular structure of 2a is that the morpholine fragment adopts a chair conformation with strong intramolecular hydrogen bonding. Compound 3a exhibits intermolecular hydrogen bonding, too. Furthermore, the computed Hirshfeld surface analysis confirms H-bonds and π–π stack interactions obtained by XRD packing analyses
Holographic two dimensional QCD and Chern-Simons term
We present a holographic realization of large Nc massless QCD in two
dimensions using a D2/D8 brane construction. The flavor axial anomaly is dual
to a three dimensional Chern-Simons term which turns out to be of leading
order, and it affects the meson spectrum and holographic renormalization in
crucial ways. The massless flavor bosons that exist in the spectrum are found
to decouple from the heavier mesons, in agreement with the general lore of
non-Abelian bosonization. We also show that an external dynamical photon
acquires a mass through the three dimensional Chern-Simons term as expected
from the Schwinger mechanism. Massless two dimensional QCD at large Nc exhibits
anti-vector-meson dominance due to the axial anomaly.Comment: 22 page
Towards azimuthal anisotropy of direct photons
Intensive radiation of magnetic bremsstrahlung type (synchrotron radiation)
resulting from the interaction of escaping quarks with the collective confining
colour field is discussed as a new possible mechanism of observed direct photon
anisotropy.Comment: 3 pages, Comments and references added, accepted to JETP Letters
(Pis'ma v ZhETF
Holographic chiral magnetic spiral
We study the ground state of baryonic/axial matter at zero temperature
chiral-symmetry broken phase under a large magnetic field, in the framework of
holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal
of chiral magnetic spiral phase that has been argued to be favored against
previously studied phase of homogeneous distribution of axial/baryonic currents
in terms of meson super-currents dictated by triangle anomalies in QCD. Our
results provide an existence proof of chiral magnetic spiral in strong coupling
regime via holography, at least for large axial chemical potentials, whereas we
don't find the phenomenon in the case of purely baryonic chemical potential.Comment: 24 pages, 15 figure
Determinant and Weyl anomaly of Dirac operator: a holographic derivation
We present a holographic formula relating functional determinants: the
fermion determinant in the one-loop effective action of bulk spinors in an
asymptotically locally AdS background, and the determinant of the two-point
function of the dual operator at the conformal boundary. The formula originates
from AdS/CFT heuristics that map a quantum contribution in the bulk partition
function to a subleading large-N contribution in the boundary partition
function. We use this holographic picture to address questions in spectral
theory and conformal geometry. As an instance, we compute the type-A Weyl
anomaly and the determinant of the iterated Dirac operator on round spheres,
express the latter in terms of Barnes' multiple gamma function and gain insight
into a conjecture by B\"ar and Schopka.Comment: 11 pages; new comments and references added, typos correcte
Holographic rho mesons in an external magnetic field
We study the rho meson in a uniform magnetic field eB using a holographic
QCD-model, more specifically a D4/D8/Dbar8 brane setup in the confinement phase
at zero temperature with two quenched flavours. The parameters of the model are
fixed by matching to corresponding dual field theory parameters at zero
magnetic field. We show that the up- and down-flavour branes respond
differently to the presence of the magnetic field in the dual QCD-like theory,
as expected because of the different electromagnetic charge carried by up- and
down-quark. We discuss how to recover the Landau levels, indicating an
instability of the QCD vacuum at eB = m_rho^2 towards a phase where charged rho
mesons are condensed, as predicted by Chernodub using effective QCD-models. We
improve on these existing effective QCD-model analyses by also taking into
account the chiral magnetic catalysis effect, which tells us that the
constituent quark masses rise with eB. This turns out to increase the value of
the critical magnetic field for the onset of rho meson condensation to eB = 1.1
m_rho^2 = 0.67 GeV^2. We briefly discuss the influence of pions, which turn out
to be irrelevant for the condensation in the approximation made.Comment: 26 pages, 10 .pdf figures, v2: version accepted for publication in
JHE
The Incremental Cooperative Design of Preventive Healthcare Networks
This document is the Accepted Manuscript version of the following article: Soheil Davari, 'The incremental cooperative design of preventive healthcare networks', Annals of Operations Research, first published online 27 June 2017. Under embargo. Embargo end date: 27 June 2018. The final publication is available at Springer via http://dx.doi.org/10.1007/s10479-017-2569-1.In the Preventive Healthcare Network Design Problem (PHNDP), one seeks to locate facilities in a way that the uptake of services is maximised given certain constraints such as congestion considerations. We introduce the incremental and cooperative version of the problem, IC-PHNDP for short, in which facilities are added incrementally to the network (one at a time), contributing to the service levels. We first develop a general non-linear model of this problem and then present a method to make it linear. As the problem is of a combinatorial nature, an efficient Variable Neighbourhood Search (VNS) algorithm is proposed to solve it. In order to gain insight into the problem, the computational studies were performed with randomly generated instances of different settings. Results clearly show that VNS performs well in solving IC-PHNDP with errors not more than 1.54%.Peer reviewe
- …
