445 research outputs found

    Temporal fluctuations of current surface density in a triangular lattice

    Get PDF
    In this paper, we examine the effect of the temporal fluctuation current correlation in the surface diffusion process in a triangular lattice, in the framework of the lattice gas model. Our calculations are per found in small circular surfaces equivalent to the probe areas in the scanning microscopy experiments. We have found that the correlation function, in the non- interacting case, follows the law Öp . In the presence of repulsive interactions between mobile particles, it behaves like Öp exp(8γp). We have also calculated the collective diffusion coefficient by the linear response theory and by the characteristic time method, which reflect clearly the order-disorder effect on the diffusion.In this paper, we examine the effect of the temporal fluctuation current correlation in the surface diffusion process in a triangular lattice, in the framework of the lattice gas model. Our calculations are per found in small circular surfaces equivalent to the probe areas in the scanning microscopy experiments. We have found that the correlation function, in the non- interacting case, follows the law Öp . In the presence of repulsive interactions between mobile particles, it behaves like Öp exp(8γp). We have also calculated the collective diffusion coefficient by the linear response theory and by the characteristic time method, which reflect clearly the order-disorder effect on the diffusion

    A Process-Based Nutrient Model for the Bedded Manure Pack of Confined Beef Systems

    Get PDF
    Manure management is of growing concern for beef cattle producers and the general public. The overall objective of this research was to develop a process-based model that predicts concentration and gaseous emission from the bedded manure pack of a confined beef cattle system, with respect to different bedding material, manure storage time, and ambient temperature. The model incorporated the data collected in three experiments designed to understand transformations and processes occurring in the bedded pack. The first study evaluated the source of volatilized ammonia nitrogen from beef cattle manure. Isotope ratio mass spectrometry was used to determine the origin of aerial ammonia nitrogen losses (urine or fecal material) from the relative isotopic abundance of nitrogen in the 15N -labeled slurry mixture. On average 84% of total ammonia nitrogen losses originated from the urine portion and were highest during the first two to four days, when fresh material was added. The second and third experiments were conducted to determine differences in ammonia, carbon dioxide, nitrous oxide, and methane concentrations and moisture content, nutrient concentrations (ammonium nitrogen, total nitrogen, total phosphorus, total potassium), short-term nitrification activity potential, and denitrification enzyme activity from simulated beef cattle bedded manure packs related to storage length (0 to 3, 3 to 6, and 6 to 9 weeks), bedding material (corn stover or soybean stubble), and temperature (10°C or 40°C). Temperature impacted all nutrient concentrations, while most variables differed with age and sample depth. A strong relationship between water and nutrient movement existed. Nitrous oxide concentrations occurred as high pulses right after material addition which was most likely caused by incomplete denitrification from pulse nitrate concentrations available in the dried bedding material. Ammonia concentrations were three times higher above bedded packs at 40°C assumedly because major ammonia losses occur through urea hydrolysis which is temperature-dependent and completed faster at higher temperatures. A model was developed based on the Integrated Farm Systems Model (IFSM). The main process for water movement was considered evaporation. Ammonia emissions were simulated based on the urea degradation process in the urine, while nitrous oxide emissions were predicted as denitrification losses. Compared to data from the bedded pack experiments, the model did not adequately capture observed hourly conditions for ammonia and nitrous oxide conditions which did not affect total nitrogen concentration. Ammonia emission at times of material addition were realistically predicted which is important for real-life barns. Depending on bedded manure pack age, the bias in model prediction for moisture content, nitrogen, phosphorus and potassium concentrations were on average 3%, 20%, 0% and -25% , respectively. Overall, the simulations showed that the model can be used to predict N-P-K fertilizer concentration for bedded manure packs

    Study of adatoms diffusion through current density fluctuation functions

    Get PDF
    In this work, we investigate the diffusion process by using a mean field lattice gas dynamical model. The temporal correlation function of the current density is calculated in a probe area of radius R. The latter is considered to test if the developed formulation can be applied to reproduce STM experiments. The obtained results concerning the effective diffusion coefficient exhibit clearly the order disorder transition effect translated by two minima appearing respectively at p=1/3 and p=2/3. The effect of the ordering phase at p=1/3 requires a threshold size more precisely, the minimum size system where, the ordering phase effect begins, to appear here is R=5.In this work, we investigate the diffusion process by using a mean field lattice gas dynamical model. The temporal correlation function of the current density is calculated in a probe area of radius R. The latter is considered to test if the developed formulation can be applied to reproduce STM experiments. The obtained results concerning the effective diffusion coefficient exhibit clearly the order disorder transition effect translated by two minima appearing respectively at p=1/3 and p=2/3. The effect of the ordering phase at p=1/3 requires a threshold size more precisely, the minimum size system where, the ordering phase effect begins, to appear here is R=5

    Twin-Screw Extrusion Processing of Distillers Dried Grains with Solubles (DDGS)-Based Yellow Perch (Perca flavescens) Feeds

    Get PDF
    Increases in global aquaculture production, compounded with limited availabilities of fish meal for fish feed, has created the need for alternative protein sources. Twinscrew extrusion studies were performed to investigate the production of nutritionally balanced feeds for juvenile yellow perch (Perca flavescens). Five isocaloric (~3.06 kcal/g) ingredient blends, adjusted to a target protein content of 36.7% db, were formulated with 0%, 10%, 20%, 30%, and 40% distillers dried grains with solubles (DDGS) at an initial moisture content of 5–7%db, with appropriate amounts of fish meal, fish oil, whole wheat flour, corn gluten meal, and vitamin and mineral premixes. During processing, varying amounts of steam (6.9–9.7 kg/h) were injected into the conditioner and water (6.7–13.1 kg/h) into the extruder to modulate the cohesiveness of the final extrudates. Extrusion cooking was performed at 226–298 rpm using a 1.9 mm die. Mass flow rate and processing temperatures generally decreased with progressively higher DDGS content. Moisture content, water activity, unit density, bulk density, expansion ratio, compressive strength and modulus, pellet durability index, water stability, angle of repose, and color were extensively analyzed to quantify the effects of varying DDGS content on the physical properties of the final extrudates. Significant differences (P\u3c0.05) among the blends were observed for color and bulk density for both the raw and extruded material, respectively, and for the unit density of the extruded product. There were also significant changes in brightness (L), redness (a), and yellowness (b) among the final products when increasing the DDGS content of the blends. Expansion ratio and compressive strength of the extrudates were low. On the other hand, all extruded diets resulted in very good water stability properties and nearly all blends achieved high pellet durability indices. In summary, each of the ingredient blends resulted in viable extrudates

    Effects of nitrogen rates on grain yield and nitrogen agronomic efficiency of durum wheat genotypes under different environments

    Get PDF
    Durum wheat is an important staple food crop in Tunisia and other Mediterranean countries and is grown in various climatic conditions. Production and yield are however severely limited not only by drought events but also by reduced levels of nitrogen fertilisation. A study was carried out at two locations in the sub-humid area of Tunisia: Mateur in 2009–10 and 2010–11 and Beja in 2011–12 and 2012–13 under rainfed conditions. Four durum wheat genotypes (landraces: Bidi, Azizi; improved: Om Rabia, Khiar) were evaluated for nitrogen agronomic efficiency and related agronomic traits under various nitrogen rates: 0, 50, 100, 150, 200 and 250 kgNha−1, with three replications. There was a significant interaction effect (P ≤ 0.001) environments × genotypes ×N treatments for grain yield (GY), biomass yield (BY), harvest index (HI), partial factor productivity of applied nitrogen (PFPN) and nitrogen agronomic use efficiencies (NAE). GY was the most affected trait by nitrogen applied showing an increase of 94% under high N treatment (250 kgNha−1) compared to control plots without N treatments. A significant linear regression exists between GY (0 N) and GY for the different N rates (r =0.70; P < 0.001). This effect was more pronounced for improved genotypes than landraces for all parameters excepting BY and NAEBY. BY showed +11% increase in landraces than improved genotypes. PFPN showed an average decrease of 65% under high-N fertilisation with 10% prevalence for improved genotypes. Landraces tend to promote vegetative growth while grain filling efficiency was higher for improved genotype

    Key drivers for copepod assemblages in a eutrophic coastal brackish lake

    Get PDF
    The copepod assemblages and abiotic parameters were investigated at 11 stations in a large coastal lake (Lake Manzalah, Nile Delta) from 2009-2010 in order to verify any impacts of eutrophication and salinity on the copepod species composition. The environmental conditions and the copepod assemblages appeared to have changed in comparison with previous studies, possibly because of increasing eutrophication and invasions of non-indigenous species (NIS). The aim of the present study was the identification of species which can be used as ecological indicators of high trophic status. Among the nine copepod species of Lake Manzalah, Acartia tonsa, Mesocyclops ogunnus, and Apocyclops panamensis were reported for the first time. Acartia tonsa, a well-known NIS for the Mediterranean, numerically dominated the copepod assemblages in some portions of the lake. The distribution of Acanthocyclops trajani and Thermocyclops consimilis was insensible to eutrophication because they can stand high levels of nutrients and hypoxia. Compared with previous reports, the copepod assemblage of Lake Manzalah was richer in species. The invasions of NIS, in addition to the heterogeneous progress of eutrophication in the lake, created an environmental mosaic with many species in total, but with single areas suitable for only a small number of them

    Variation of Grain Yield, Grain Protein Content and Nitrogen Use Efficiency Components under Different Nitrogen Rates in Mediterranean Durum Wheat Genotypes

    Get PDF
    Nitrogen (N) is a crucial nutrient for plant growth and development. To optimize agricultural environments, N fertilizers represent a critical tool to regulate crop productivity. The improvement of nitrogen use efficiency (NUE) represents a promising tool that may enable cereal production to meet future food demand. Wheat reported contrasting behaviors in N utilization showing specific abilities depending on genotype. This study selected two landraces and two improved genotypes from Northern Africa to investigate grain yield (GY), grain protein content (GPC) and NUE. Plants were grown under three levels of N supply: 0, 75, 150 kg N ha−1 and for two consecutive years. Results reported a better NUE (0.40 kg.kg N−1) obtained under 150 kg N ha−1, while N utilization efficiency (NUtE) showed a 13% increase using 75 kg N ha−1 compared with 150 kg N ha−1. Under low nitrogen rate (0 N), crop N supply (CNS) and N uptake efficiency (NUpE) were shown as determinant factors for improved genotypes GY (R2 = 0.72), while NUtE represented the most determinant component for GPC in landraces (R2 = 0.92). Multivariate regression models explained the dependence in GPC on NUE, NUpE, and NUtE. In conclusion, our results recognize GPC and NUtE as suitable selection traits to identify durum wheat with higher NUE

    Six Sigma based multicriteria approach to improve decision settings

    Get PDF
    The present competitive market is focusing industrial efforts on producing high-quality products with the lowest possible cost. The total performance of the process and the quality of its production depend on the one hand, of the characteristics of the intermediate products, and on the other hand, of the operation parameters of the manufacturing. To help accomplish this objective, various quality improvement philosophies have been put forward in recent years and of these, Six Sigma has emerged as perhaps the most viable and efficient technique for process quality improvement. The objective of this paper is to propose a method that puts in obviousness the enforcement performances improvement Six Sigma to assure high-level quality products and to make firm a level of improvement of the long-term performance. The application of the Six Sigma methods enforced with multicriteria approach to permit classification the betters\u27 choices of a Tunisian industry
    • …
    corecore