3,440 research outputs found
Propagation and smoothing of shocks in alternative social security systems
Even with well-developed capital markets, there is no private market mechanism for trading between current and future generations. This generates a potential role for public old-age pension systems to spread economic and demographic shocks among different generations. This paper evaluates how different systems smooth and propagate shocks to productivity, fertility, mortality and migration in a realistic OLG model. We use reductions in the variance of wealth equivalents to measure performance, starting with the existing U.S. system as a unifying framework, in which we vary how much taxes and benefits adjust, and which we then compare to the existing German and Swedish systems. We find that system design and shock type are key factors. The German system and the benefit-adjustment-only U.S. system best smooth productivity shocks, which are by far the most important shocks. Overall, the German system performs best, while the Swedish system, which includes a buffer stock to relax annual budget constraints, performs rather poorly. Focusing on the U.S. system, reliance solely on tax adjustment fares best for mortality and migration shocks, while equal reliance on tax and benefit adjustments is best for fertility shocks
Quantum vortex tunneling in thin films
Cuprate films offer a unique opportunity to observe vortex tunneling effects,
due to their unusually low superfluid density and short coherence length. Here,
we measure the magnetoresistance (\textit{MR}) due to vortex motion of a long
meander line of a superconducting film made of underdoped
. At low temperatures (\textit{T}), the \textit{MR}
shows a significant deviation from Arrhenius activation. The data is consistent
with two dimensional Variable Range Hopping (VRH) of single vortices, i.e.
. The VRH temperature scale depends on the
vortex tunneling rates between pinning sites. We discuss its magnitude with
respect to estimated parameters of the meander thin film.Comment: 5 figure
Effective single-band models for strongly interacting fermions in an optical lattice
To test effective Hamiltonians for strongly interacting fermions in an
optical lattice, we numerically find the energy spectrum for two fermions
interacting across a Feshbach resonance in a double well potential. From the
spectrum, we determine the range of detunings for which the system can be
described by an effective lattice model, and how the model parameters are
related to the experimental parameters. We find that for a range of strong
interactions the system is well described by an effective model, and the
effective superexchange term, , can be smoothly tuned through zero on either
side of unitarity. Right at and around unitarity, an effective one-band general
Hubbard model is appropriate, with a finite and small on-site energy, due to a
lattice-induced anharmonic coupling between atoms at the scattering threshold
and a weakly bound Feshbach molecule in an excited center of mass state.Comment: 7 pages, 7 figures; minor typos correcte
Fine Structure Discussion of Parity-Nonconserving Neutron Scattering at Epithermal Energies
The large magnitude and the sign correlation effect in the parity
non-conserving resonant scattering of epithermal neutrons from Th is
discussed in terms of a non-collective local doorway model. General
conclusions are drawn as to the probability of finding large parity violation
effects in other regions of the periodic table.Comment: 6 pages, Tex. CTP# 2296, to appear in Z. Phys.
Topological Classification of Gapped Spin Chains :Quantized Berry Phase as a Local Order Parameter
We characterize several phases of gapped spin systems by local order
parameters defined by quantized Berry phases. This characterization is
topologically stable against any small perturbation as long as the energy gap
remains finite. The models we pick up are dimerized Heisenberg chains
and S=2 Heisenberg chains with uniaxial single-ion-type anisotropy.
Analytically we also evaluate the topological local order parameters for the
generalized Affleck-Kennedy-Lieb-Tasaki (AKLT) model. The relation between the
present Berry phases and the fractionalization in the integer spin chains are
discussed as well.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.
Even-odd correlations in capacitance fluctuations of quantum dots
We investigate effects of short range interactions on the addition spectra of
quantum dots using a disordered Hubbard model. A correlation function \cS(q) is
defined on the inverse compressibility versus filling data, and computed
numerically for small lattices. Two regimes of interaction strength are
identified: the even/odd fluctuations regime typical of Fermi liquid ground
states, and a regime of structureless \cS(q) at strong interactions. We
propose to understand the latter regime in terms of magnetically correlated
localized spins.Comment: 3 pages, Revtex, Without figure
Transition from overscreening to underscreening in the multichannel Kondo model: exact solution at large N
A novel large-N limit of the multichannel Kondo model is introduced, for
representations of the impurity spin described by Schwinger bosons. Three cases
are found, associated with underscreening, overscreening and exact Kondo
screening of the impurity. The saddle-point equations derived in this limit are
reminiscent of the ``non-crossing approximation'', but preserve the
Fermi-liquid nature of the model in the exactly screened case. Several physical
quantities are computed, both numerically, and analytically in the low-\omega,T
limit, and compared to other approaches.Comment: 4 pages, RevTeX3.0, 2 EPS figures. Published versio
Routes towards Anderson-Like localization of Bose-Einstein condensates in disordered optical lattices
We investigate, both experimentally and theoretically, possible routes
towards Anderson-like localization of Bose-Einstein condensates in disordered
potentials. The dependence of this quantum interference effect on the nonlinear
interactions and the shape of the disorder potential is investigated.
Experiments with an optical lattice and a superimposed disordered potential
reveal the lack of Anderson localization. A theoretical analysis shows that
this absence is due to the large length scale of the disorder potential as well
as its screening by the nonlinear interactions. Further analysis shows that
incommensurable superlattices should allow for the observation of the
cross-over from the nonlinear screening regime to the Anderson localized case
within realistic experimental parameters.Comment: 4 pages to appear in Phys. Rev. Let
Supersymmetric U(1)B x U(1)L model with leptophilic and leptophobic cold dark matters
We consider a supersymmetric model with extra gauge
symmetry that are broken spontaneously. Salient features of this model are that
there are three different types of cold dark matter (CDM) candidates, and
neutral scalar sector has a rich structure. Light CDM with pb can be easily accommodated by leptophobic dark matter
() with correct relic density, if the gauge boson mass is
around . Also the PAMELA and Fermi/LAT data can be fit by
leptophilic CDM with mass TeV. There could be interesting signatures
of new fermions and new gauge bosons at the LHC.Comment: 5 pages, 2 figure; to be published in Phys. Lett.
- …