1,436 research outputs found

    Relative Equilibria in the Four-Vortex Problem with Two Pairs of Equal Vorticities

    Full text link
    We examine in detail the relative equilibria in the four-vortex problem where two pairs of vortices have equal strength, that is, \Gamma_1 = \Gamma_2 = 1 and \Gamma_3 = \Gamma_4 = m where m is a nonzero real parameter. One main result is that for m > 0, the convex configurations all contain a line of symmetry, forming a rhombus or an isosceles trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case exists only when m is positive. In fact, there exist asymmetric convex configurations when m < 0. In contrast to the Newtonian four-body problem with two equal pairs of masses, where the symmetry of all convex central configurations is unproven, the equations in the vortex case are easier to handle, allowing for a complete classification of all solutions. Precise counts on the number and type of solutions (equivalence classes) for different values of m, as well as a description of some of the bifurcations that occur, are provided. Our techniques involve a combination of analysis and modern and computational algebraic geometry

    International coral reef congress

    Get PDF

    Symmetry, bifurcation and stacking of the central configurations of the planar 1+4 body problem

    Full text link
    In this work we are interested in the central configurations of the planar 1+4 body problem where the satellites have different infinitesimal masses and two of them are diametrically opposite in a circle. We can think this problem as a stacked central configuration too. We show that the configuration are necessarily symmetric and the other sattelites has the same mass. Moreover we proved that the number of central configuration in this case is in general one, two or three and in the special case where the satellites diametrically opposite have the same mass we proved that the number of central configuration is one or two saying the exact value of the ratio of the masses that provides this bifurcation.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1103.627

    Euler configurations and quasi-polynomial systems

    Full text link
    In the Newtonian 3-body problem, for any choice of the three masses, there are exactly three Euler configurations (also known as the three Euler points). In Helmholtz' problem of 3 point vortices in the plane, there are at most three collinear relative equilibria. The "at most three" part is common to both statements, but the respective arguments for it are usually so different that one could think of a casual coincidence. By proving a statement on a quasi-polynomial system, we show that the "at most three" holds in a general context which includes both cases. We indicate some hard conjectures about the configurations of relative equilibrium and suggest they could be attacked within the quasi-polynomial framework.Comment: 21 pages, 6 figure

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n1(p)W_{2n-1}(p) of cardinality σ(p2n1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    The Unequal Geographic Burden of Federal Taxation

    Get PDF
    In the United States, workers in cities offering above-average wages – cities with high productivity, low quality-of-life, or inefficient housing sectors – pay 30 percent more in federal taxes than otherwise identical workers in cities offering below-average wages. According to simulation results, taxes lower long-run employment levels in high-wage areas by 17 percent and land and housing prices by 28 and 6 percent, causing locational inefficiencies costing 0.33 percent of income, or $40 billion in 2008. Employment is shifted from North to South and from urban to rural areas. Tax deductions index taxes partially to local cost-of-living, improving locational efficiency.

    Statistical Mechanics of Vacancy and Interstitial Strings in Hexagonal Columnar Crystals

    Full text link
    Columnar crystals contain defects in the form of vacancy/interstitial loops or strings of vacancies and interstitials bounded by column ``heads'' and ``tails''. These defect strings are oriented by the columnar lattice and can change size and shape by movement of the ends and forming kinks along the length. Hence an analysis in terms of directed living polymers is appropriate to study their size and shape distribution, volume fraction, etc. If the entropy of transverse fluctuations overcomes the string line tension in the crystalline phase, a string proliferation transition occurs, leading to a supersolid phase. We estimate the wandering entropy and examine the behaviour in the transition regime. We also calculate numerically the line tension of various species of vacancies and interstitials in a triangular lattice for power-law potentials as well as for a modified Bessel function interaction between columns as occurs in the case of flux lines in type-II superconductors or long polyelectrolytes in an ionic solution. We find that the centered interstitial is the lowest energy defect for a very wide range of interactions; the symmetric vacancy is preferred only for extremely short interaction ranges.Comment: 22 pages (revtex), 15 figures (encapsulated postscript

    The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study

    Get PDF
    Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses
    corecore