31,749 research outputs found

    Finite and infinite h-plane bifurcation of waveguide with anisotropic plasma medium

    Get PDF
    H-plane bifurcation in parallel plate waveguide filled with homogeneous, anisotropic, and temperate plasm

    Numerical methods for analyzing electromagnetic scattering

    Get PDF
    Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide

    Numerical methods for analyzing electromagnetic scattering

    Get PDF
    Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield

    Numerical methods for analyzing electromagnetic scattering

    Get PDF
    The wave propagation inside a cylindrical waveguide, coated with lossy dielectric material due to the incidence of a plane wave at the open end of the guide, was studied. The general properties of the normal mode propagation were investigated

    A new observational and numerical study of tidal interactions in M81-M82-NGC3077 system

    Get PDF
    A nearby system of interacting galaxies M81-M82-NGC3077 triplet (D = 3.3 Mpc; Freeman & Madore 1988) has been studied using multi-wavelength observations and numerical simulations to obtain a comprehensive understanding on the dynamics and the consequences of tidal interactions in a group environment. The VLA 12-field Mosaic H I observations of 2 x 1.5 deg. region have revealed a vast array of H I filaments which suggests that the severity and extent of tidal disruptions far exceed the previous estimates. A tidal remnant of the former H I disk of M82 extending up to 30 kpc (in projection) is identified for the first time, and the pervasive effects of the tidal disruption are traced into the inner disk by optical and CO observations, including a kinematic trace of a large scale bar potential (Yun, Ho, & Lo 1992). The H I disk of M81 is traced out to 40 kpc in radius, and a large scale (l approx. 20 kpc) velocity anomaly ('High Velocity Trough'), which may be a remnant of a gaseous collision, is found within the disk of M81. The large H I bridge between M81 and NGC 3077 (van der Hulst 1979) is also found to extend approx. greater than 50 kpc further, bending around NGC 3077, toward M82. The total H I detected in this experiment, 5.6 x 10(exp 9) solar mass, represents the majority of the single-dish flux (Appleton, Davies, & Stephenson 1981) and suggests that the bulk of H I found in the region belongs to the three galaxies and the tidal filaments. The impact and details of the tidal interactions have been further examined through the use of numerical techniques. The 'restricted 3-body' approach was used to simulate the observed distribution of tidal H I streamers connecting the three galaxies, and the success of the simulation is further strengthened by the accurate predictions on the gas kinematics

    Upper bounds for the secure key rate of decoy state quantum key distribution

    Full text link
    The use of decoy states in quantum key distribution (QKD) has provided a method for substantially increasing the secret key rate and distance that can be covered by QKD protocols with practical signals. The security analysis of these schemes, however, leaves open the possibility that the development of better proof techniques, or better classical post-processing methods, might further improve their performance in realistic scenarios. In this paper, we derive upper bounds on the secure key rate for decoy state QKD. These bounds are based basically only on the classical correlations established by the legitimate users during the quantum communication phase of the protocol. The only assumption about the possible post-processing methods is that double click events are randomly assigned to single click events. Further we consider only secure key rates based on the uncalibrated device scenario which assigns imperfections such as detection inefficiency to the eavesdropper. Our analysis relies on two preconditions for secure two-way and one-way QKD: The legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or that there exists no quantum state having a symmetric extension (one-way QKD), that is compatible with the available measurements results. Both criteria have been previously applied to evaluate single-photon implementations of QKD. Here we use them to investigate a realistic source of weak coherent pulses. The resulting upper bounds can be formulated as a convex optimization problem known as a semidefinite program which can be efficiently solved. For the standard four-state QKD protocol, they are quite close to known lower bounds, thus showing that there are clear limits to the further improvement of classical post-processing techniques in decoy state QKD.Comment: 10 pages, 3 figure

    A relationship between the integrated CO intensity and the radio continuum emission in spiral galaxies

    Get PDF
    In an effort to determine the role played by cosmic ray electrons and interstellar radiation fields on the collapse of molecular clouds, a survey was begun to investigate the relationship between the radio continuum brightness emission and the integrated CO intensity in spiral galaxies. The investigation was done on two scales; a global galaxy to galaxy comparison of integrated disk values, and a ring-averaged study over the disks of individual galaxies. For the large-scale survey, radio continuum flux densities integrated over the full disk at 1.49 GHz were taken from Condon (1987) and the total CO fluxes were taken from Verter (1985). The galaxies with values included in the two catalogs are displayed. It can be seen that a good correlation exists between the integrated CO emission and radio continuum emission
    corecore