NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Semiannual Report for

NUMERYCAL METHODS FOR ANALYZING ELECTROMAGNETIC SCATTERING
March 25, 1985 tu September 24, 1985

Submitted to

Mr. Edward J. Rice
 Nationsl Aeronautics and Space Administration Lewis Research Center (MS 54-3)
 Cleveland, OH 44113

Prepared by

> S. W. Lee, Y. T. Lo, S. L. Chuang, and C. S. Lee
> Slectromagnetics Laboratory
> Department of Electrical and Computer Engineering
> University of Illinois Urbana, IL 61801

Semiannual Report for

NUMERICAL METHODS FOR ANALYZING ELECTROMAGNETIC SCATTERING

 March 25, 1985 to September 24, 1785Submitted to

Mr. Edward J. Rice
 National A』ronautics and Space Administration Lewis Research Center (MS 54-3)
 Cleveland, OH 44113

Grant No. MAG-3-475

Prepared by

```
S. W. Lec Y. T. Lo, S. L. Chuang, and C. S. Lee Electromagnetics Laboratory
Department of Electrical and Computer Engineering University of Illinois Urbana, IL 61801
```


TABLE OF CONTENTS

I. INTRODUCTION 1
II. TECHNICAL PEKSONNEL 1
III. PRESENTATION AND PUBLICATIONS 2
IV. íECHNICAL PROGRESS 3
(1) Normal modes in in overmoded circular wavegulde coated with lossy material 4
(2) Scattering from an uncoated circular gulde terminated by a PEC 5
(3) The RCS from an uncoated guide terminated by a PEC including the effect of the rim diffraction 25
(4) The outlines of the proposed experiments for the RCS reduction from a circular waveguide coated with lossy material 47
(5) Experiments on a waveguide coated with very lossy magnetic material. as a substitute for a corrugated waveguide 56
(6) Conclusions and future prospects 56
REFERENCES 60
APPENDIX A: NORMAL MODES IN AN OVERMODED CIRCULAR WAVEGUIDE CCATED WITH LOSSY MATERIAL 62
APPENDIX B: LECTURE NOTES ON RCS: VOLUME I 112
APFENDI:. C: SIMPLE VERSION OF CORRUGATED GUIDE: CIRCULAR GUIDE COATED WITH LOSSY MAGNETIC MATERIAL 146
APPENDIX D: A PROPOSAL FOR CONTINUATION OF NASA NAG 3-475, "NUMERICAL METHODS FOR ANALYZING ELECTROMAGNETIC SCATTERING" 157

LIST OF FIGURES

Figure 1. A circular waveguide terminated by a perfect electric conductor (PEC) is iliuminated by an incident plane wave.

Figure 2a. The RCS's from a PEC-termlnated waveguide
(-_ experimental,-----theoretical, interior irradiation only) and from an open-ended waveguide (--experimencal) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=6.08 \mathrm{GHz}, a / \lambda=0.636$, length $=21.59 \mathrm{~cm}$).

Figure 2b. The RCS's from a PEC-terminated waveguide (——experimental,-----theoretical, interior irradiation only) and from an open-ended waveguide (-..-experimental) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, f=6.08 \mathrm{GHz}, a / \lambda=0.636$, length $=21.59 \mathrm{~cm})$.

Figure 3a. The RCS's from a PEC-terminated waveguide (—_ experimental,-----theoretical, intarior irradiation only) and from an open-ended waveguide (-- experimental) as a function of the incident angle (HH polarization, $\mathrm{a}=3.137 \mathrm{~cm}, f=9.13 \mathrm{GHz}, \mathrm{a} \lambda=0.955$, length $=21.59 \mathrm{~cm}$).

Figure 3b. The RCS's from a PEC-terminated waveguide (-_ experimental،-----theorecical, interior irradiat ion only) and from an open-ended waveguide (———experimental) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, f=9.13 \mathrm{GHz}, a / \lambda=0.955$, length $=21.59 \mathrm{~cm})$.

Figure 4a. The RCS's from a PEC-terminated wavegulde (-_ experimental,-----theoretical, Interior irraulation only) and frum an open-ended waveguide (-mexperimental) as a function of the incident angle (HH polarizalion, $a=3.137 \mathrm{~cm}, f=10.63 \mathrm{GHz}, a / \lambda=1.112$, length $=21.59 \mathrm{~cm}$).

Figure 4b. The RCS's from a PEC-terminated waveguide (——experimental,-- - theoretical, interior irradiation only) and from an open-ended waveguide (-.experimental) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, \mathrm{f}=10.63 \mathrm{GHz}, \mathrm{a} / \lambda=1.112$, length = 21.59 cm).

Figure 5a.	The RCS's from a PEC-terminated wavegulde (——experimential,-----theoretical, interlo: frradiation only) and from an open-ended wavegulde (-- experimental) as a function of the Incldent angle (HH polarlzation, $=3.137 \mathrm{~cm}, f=12.17 \mathrm{CHz}, \mathrm{a} \lambda=1.237$, length $=21.59 \mathrm{~cm})$.
Figure 5b.	The RCS's from a PEC-terminated wavegulde (-_ experimental,------theoretical, interior Irradiation only) and from an open-ended wavegulde (---experimental) as a function of the incident angle (VV polarization, a - $3.137 \mathrm{~cm}, f=12.17 \mathrm{CHz}, \mathrm{a} \lambda=1.23^{7}$ length = 21.59 cm$)$.
Figure 6a.	The RCS's from a PEC-terminated waveguide (——experimental,----- theoretical, interior irradlation only) and from an open-ended waveguide -. -experimental) as a function of the incldent angle (HH polarization, $a=3.137 \mathrm{~cm}, f=13.68 \mathrm{GHz}, \mathrm{a} / \mathrm{\lambda}=1.430$, length $-21.59 \mathrm{~cm})$.
Figure 6b.	The RCS's from a PEC-terminated waveguide (—_e experimental,-----meoretical, interior irradiation only) and from an open-ended wavegulde (--experimental) as a function of the incident angle (VV polarization, a $=3.137 \mathrm{~cm}, f=13.68 \mathrm{cHz}, \mathrm{a} / \mathrm{d}=1.430$. length $=21.59 \mathrm{~cm})$.
Figure 7a.	The RCS's from a PEC- terminated wavegu!de \qquad experimental,----- theoretical. interior irradiation only) and from an open-ended waveguide (--experlmental) as a function of tre incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=15.20 \mathrm{GHz}, a / \lambda=1.589$, length - 21.59 cm).
Figure 7b.	The RCS's from a PEL-terminated wavegulde \qquad experimental,---..--theoretical, interior irradiation only) and from an open-ended waveguide (--experimental) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, \mathrm{f}=15.20 \mathrm{GHz}, \mathrm{a} / \lambda=1.589$, length $=21.59 \mathrm{~cm})$.
Figure 8a.	The RCS's from a PiC-terminated waveguide \qquad experimental,-----theoretical, interior irradiation only) and from an open-ended waveguide (-- experimental) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=18.0 \mathrm{GHz}, a / \lambda=1.88$, length $=21.59 \mathrm{~cm})$.

Figure 9. The RCS's from olrcular guides (0 © PEC-terminated, [D open-ended) at a normal incidence as a function of a/ג. (-----approximate RCS trom a circular plate [5].)

Figure 10a. The RCS's from on open-ended semi-Infinite olroular waveguide using the equivalent-current (EC) method (-----) in comparison with the results using the Wiener-Hopf technique (——) and the experimental data (.......) [13] (VV polarization, a $=7.56 \mathrm{~cm}$, $\rho=9.1 \mathrm{GHz}, \mathrm{a} / \lambda=2.29$).

Figure 10b. The RCS's from an open-ended seml-infinite circular waveguide using the equivalent-current (EC) method (----) in comparison with the results using the Wiener-Hopf technique (\quad _) and the experimental data (........) [13] (HH polarization, $a=7.56 \mathrm{~cm}$, $r=9.1 \mathrm{GHz}, \mathrm{a} \lambda=2.29)$.

Figure lla. The RCS's from an open-ended semi-infinite cilcular waveguide using the equivalent--current (EC) method (-----) in comparison with the results using the Wlener-Hoff technique (-) and the experimental data (o.......) [13] (VV polarization, a $=3.81 \mathrm{~cm}$, $f=9.1 \mathrm{GHz}, \mathrm{a} / \lambda=1.16$).

Figure 11b. The RCS's from an open-ended semi-infinite clrcular waveguide using the equivalent-current (EC) method (-----) in comparison with the results using the Wiener-Hopt technique $(\longrightarrow$) and the experimental data (n.......) [13] (HH polarlzation, a $=3.81 \mathrm{~cm}$, $f=9.1 \mathrm{GHz}, \mathrm{a} / \lambda=1.16$).

Figure 12a. The RCS from the rim diffraction of a PEC-terminated circular waveguide assuming the interior Irradiation is completely suppressed (——total, - - - -from front edge only, -- -from back edge only, hH polarization, $a=3.81 \mathrm{~cm}, f=9.1 \mathrm{GHz}, a / \lambda=1.16$)

Figure 12b. The RCS from the rim diffraction of a PEC-terminated circular waveguide assuming the interior irradiatior is completely suppressed (—total,-- - from front edge only, -- - from back edge only, VV polarizetion, $a=3.81 \mathrm{~cm}, f=3.1 \mathrm{GHz}, \mathrm{a} / \lambda=1.16$)

Flgure 13a. The RCS's from a PEC-terminated wavegulde (-_experimental:........theoretical, interior irrjdiation onlyi-- - theoretioal, rim diffraction included) as a function of the incident angle (HH polarization, a $=3.137 \mathrm{~cm}, f=6.08 \mathrm{GHz}, \mathrm{a} \lambda=0.636$, lengt: 21.59 cm).

Flgure 13b. The RCS's from a FEC-torminated wavogulde (—_experimental......... the retical, interior Irradiation only;-m-theoretical, rim diffraction included) as a function of the inolient angle (VV polarlzation, a $=3.137 \mathrm{~cm} . f=6.08 \mathrm{cHz}$, a/d $=0.636$, length = 21.59 cm).

Figure 14a. The RCS's Prom a PECnterminated wavegulde (__ experimental,........theoretical, interior irradlation only;-- - theoretical, rim diffraction included) as a function of the incldent angle (HH polarization, $a=3.137 \mathrm{~cm}, f=9.13 \mathrm{gHz}, a / \lambda=0.955$, length = 21.59 cm).

F'lgure 14b. The RCS's from a PEC-terminated waveguide (—_experimental,....... theoretical, interior irradiation only;-- - theoretical, rim diffraction included) as a function of the incident angle (VV polarization, a = $3.137 \mathrm{~cm}, f=9.13 \mathrm{GHz}, \mathrm{a} \lambda=0.955$, length $=21.59 \mathrm{~cm}$).

Figure 15a. The RCS's from a PEC-terminated waveguide (___ experimental,........ theoretical, interior irradiation onlyi--- theoretical, rim diffraction included) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=10.63 \mathrm{GHz}, \mathrm{a} \lambda=1.112$, length - 21.59 cm).

Figure 15b. The RCS's from a PEC-terminated waveguide (—_ experimental........ theoretical, interior irradiation only;-..-- theoretical, rim diffraction included) as a funcition of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, f=10.63 \mathrm{GHz}, a / \lambda=1.112$, length = 21.59 cm).

Figure 16a. The RCS's from a PEC-terminated waveguide (___ experimental,...... theoretical, interior irradiation only;--- theoretical, rim diffraction included) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=12.17 \mathrm{GHz}, a / \lambda=1.237$, length - 21.59 cm$).$
Figure 16b. The RCS's from a PEC-terminated wavegulde (-_-experimental......... theoretloal, interior irraciation only;----theoretical, rim diffraction included) as a function of the incident angle (VV polarization, $=3.137 \mathrm{~cm}, f=12.17 \mathrm{GHz}, \mathrm{a} / \lambda=1.237$, length - $21.59 \mathrm{om} \%$.
Flgure 17a. The RCS's from a PEC-terminated wavegulde (—_ experimental,........ theoretical, interior irradiation only;----theoretioal, rim diffraction included) sis a function of the incldent angle (HH polarization, $a=3.137 \mathrm{~cm}, f=13.68 \mathrm{GHz}, \mathrm{a} / \lambda=1.430$, length - 21.59 cm).
Flgure 17b. The RCS's from a PEC-terminated wavegulde (—_ experimental......... theoretlcal, interior irradiation only;--- theoretical, rim diffraction included) as a function of the incldent angle (VV polarization, a $=3.137 \mathrm{~cm}, f=13.68 \mathrm{GHz}, a / \lambda=1.430$, length $=21.59 \mathrm{~cm})$.
Figure 18a. The RCS's from a PEC-terminated wavegulde (-_experimental,........ theoretical, interior Irradiation only;----theoretlcal, rim diffraction Included) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=15.20 \mathrm{GHz}, a / \lambda=1.589$, length $=21.59 \mathrm{~cm})$.
Figure 18b. The RCS's from a PEC-terminated waveguide (—_experimental........ theoretical, interior Irradiation only;--- theoretical, rim diffraction included) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, f=15.20 \mathrm{GHz}, 3 / \lambda=1.589$. length $=21.59 \mathrm{~cm})$.
Figure 19a. The RCS's from a PEC-terminated waveguide (——experimental,theoretical, incerior irradiation only;--- theoretical, rim diffraction included) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=18.0 \mathrm{GHz}, \mathrm{a} / \lambda=1.88$, length $=21.59 \mathrm{~cm})$.
Figure 19b. The RCS's from a PEC-terminated waveguide (——experimental,........ theoretical, interior irradiation only;----theoretical, rim diffraction includet) as a function of the incident angle (VV polarization, a $=3.137 \mathrm{~cm}, f=18.0 \mathrm{GHz}, a / \lambda=1.88$, length $-21.59 \mathrm{~cm})$.

Flgure 20. The geometries of the waveguldes for the proposed experlments: a) empty gulde, b) coated guide with a taperling distance of a, and 0) coated gulde with aperine distance of 2 a .

Eigure 21a. The RCS's as a function of the Inoldent angle from a PEC-terminated clrcular waveguide coated with a lossy material (Crowloy BXI13, -12-j0.144, $\mu=1.74-13.306$) with a coating thickness of $T=0,0.025 \mathrm{~cm}$ (0.68 coating) and $0.05 \mathrm{~cm}(1.38$ coaring) (a $=3.95 \mathrm{~cm}, f=9.2 \mathrm{CHz}$, a/ג - 1.2, length = 26.46 cm , VV polarlzation, --- interior irradiation oniy, rim diffraction Included).

Figure 2lb. The RCS's as a function of the incldent angle from a PEC-terminated circular waveguide coated with a lossy material (Crowloy BXI13, - 12-j0.144, μ - 1.74-j3.306) with a coating thickness of $\tau=0,0.025$ arr (0.68 coating) and 0.05 cm (1.38 coating) $(a=3.95 \mathrm{~cm}, f=9.2 \mathrm{CHz}$, $a / \lambda=1.2$, length $=26.46 \mathrm{~cm}, \mathrm{HH}$ polarlzation, $-\infty-$ interior irradiation only, rim d!ffraction Included).

Figure 22a. The RCS's as a function of the incident angle from a PEC-terminated olrcular wavegulde coated with a lossy materlal (poly-2.5-dlchlorostyrene, -7.3, $\mu=0.91-\mathrm{jO} .32$) with a coating thickness of $\tau=0,0.1 \mathrm{~cm}$ (1\% coating) and 0.3 cm (38 coating) (a $=10 \mathrm{~cm}$, $r=10 \mathrm{GHz}, a / \lambda=3.33$, length $=60 \mathrm{~cm}, \mathrm{VV}$ polarization, - - - intecior irradiation only, rim diffraction included).

Flgure 22b. The RCS's as a function of the Incident angle from a PEC-terminated clrcular wavegulde coated with a lossy materlal (polyr2,5-dichlorostyrene, -7.3, μ - 0.91-j0.32) with a coating thickness of $\tau=0,0.1 \mathrm{~cm}$ (1% coating) and 0.3 cm (38 coating) $(a=10 \mathrm{~cm}$, $f-10 \mathrm{CHz}, \mathrm{a} \lambda=3.33$, length $-60 \mathrm{~cm}, \mathrm{HH}$ polarization, - - - interior irradiation only, rim diffraction Included).

Figure 23. The waveguide structure for the experiments on a CP aritenna (not to scale).

I. INTRODUCTION

The research grant NAC 3-475 ontitled "Numerlcal Methods for Analyzing Eleotromagnetic Scaterlng" was awarded to the Unlversity of Illlnols by NASA-Lewls Rescarch Center on September 28, 1983. Mr. Edward M. Rloe of NASA's Lewls Research Center ls the Technlcal officer, and Mr. Boyd M. Bane is the contracting officer. The total amount of funds recelved by the University is

$$
\$ 74,985+\$ 80,009-\$ 154,994
$$

to cover the perlod from

September 25, 1983 to November 25, 1985 (26 months).

This report is the fourth semiannual report which covers the period :iarci. 25, 1985 to September 24, 1985.
II. technical personnel
S. W. Lee Professor of Electrical and Computer Engineering
Y. T. Lo Professor of Electricai and Computer Engineering
S. L. Chuang Assistant Frofessor of Electrical and Computer Engineering
C. S. Lee Research Assistant of the Department of Electrlcal and Computer Engineering

III. PRESENTATION AND PUBLICATIONS

1. Professor S. W. Lee travel d to NASA Lewis on August 16, 1985 to present a taik entltled "Leoture Notes on RCS: Volume I." Vjewgraphs of the presentation ari attached here as Appendix B.
2. C. S. Lee. S. L. Chuang, and S. W. Lee, "A Slmple Version of Corrugated Wavegulde: Smooth-ialled Ciroular Wevegulde Coated with Lossy Magnetlo Materdal," AP-S Internatlonal Symposlum Dlgest, Vol. 1. Pp. 303-306, Jine 1985; also presented at, Seventh linnuad Electromagseidos Propagation and Communlcation Afflilates Workshop, Urbana, IL, Aprı1 1985. Viewgraphs of the presentation at the AP meeting in Vancouver, B.C., are attached as Appendix C.
3. C. S. Lee, S. W. Lee, and S. L. Chuang, NNormal Mcues In an Overmoded Clrcular Wavegulde Coated With Lossy Materlal," submitted for publication to IEEE Trans. MLcrowave Theory Tech. (See Appendix A.)
4. C. S. Lee, S. W. Lee, and S. L. Chuang, "Scattering from an Open-Ended Circular Guide Using the Equivalent-Current Method," in preparation, to be submitted for publication.
5. C. S. Lee, "Scattering from a Clrcular Waveguide Coated with Lossy Material," In preparation, for Ph.D. thesis, Department of Electrical and Computer Engineering, University of Illinols. Urbana, IL, January 1986.

IV. TECHNICAL PROGRESS

Abstract

Major ltems acomplished in thls reporting perlod ares

1. The attenuation propertles of the , ormal modes In an overmoded wavegulde coated with a lossy material are analyzed and submitted for publioation. The preprint of the peper is attached in Appendix A. It ls found that the low-order modes (which contribute the most to the radar oross section (RCS) from a olroular wavegulde terminated by a perfect electrio coiductor (PEC)) oan be slgniflcantly attenuated even with a thin layer of coating if the ooating materlal is not too lossy. A thinner layer of coating is requilred for large attenuation of the low-order modes if the coatlisg materlal is magnetic rather than dielectic.
2. The RCS from an uncoated circular gulde terminated by a PEC has been caloulated and compared with avallable experimental data. It Is conflrmed that the Interior Irradation contributes to the RCS much more than the rim diffraction. Thus suppressing the interior Irradiation by coating the lfiterlor waveguide wall or by other means will be very offective in reducing the RcS from the PEC-terminated gulde, especially for a large value of a / λ (>1) at a small incldent angle.
3. For the calculation of the contribution from the rim diffraction, we have chosen the equivalent-current method based on the geometrical theory of diffraction (CTD), and the RCS's with the Inclusion of the rim-diffraction contribution are compared with the
experlmental data of the aCS from an uncoated guide terminated by a PEC. The agreament lmproves algndfloantly with the lnolueton of the rlm-diffraction contributlon. Especlally, the term from the rim-diffraction contidbution accounts well for the fine features of the RCS.
4. We are planning for experlments on the RCS reduction from a coated circular guide terminated by a PEC and the detalled sohemes for the experimente are included in this report.
5. As shown In the previnus report [1], the wavegulde coated with a lossy magnetlc material has been suggested as a substlthte frer the corrugated waveguide. The experiments to verlfy the theory are in progress and the detalls of the experiment arn Included.

Detalls are explained below.
(1) Normal modes in an overmoded olrcular wavegulde coated with lossy materlal

The normal modes in an overmoded wavegulde coated with a lossy naterial are analyzed, partloularly for their attenuation properties as a function of coating materlal, layer thickness, and frequency. When the coating materisi is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. Thls coated guide serves as a mode suppressor of the low-order rodes, whlch can be partlcularly useful for reducing the radar cross section (RCS) of a cavity structure such as a jet englne inlet. When the coating materlal is very lossy,
low-order modes fall Into two distinct groups: hlghly and lowly atteruated modes. However, as a / λ (a - radius of the cylinder; λ = the Pree-space wavelength) Increases, the separation between these two groups becomes less distinctive. The attenuation constants of most of the low-order modes become small, and decrease as a function of λ^{2} / a^{3}. See Appendix A for detalls.

(2) Scattering from an uncoated circular guide terminated by a PEC

Previous investigation has shown that the jet intake contributes signiflcantly to the RCS from a modern military aircraft, and coating the interlor wall of the jet intake with a lossy material has been proposed to reduce the RCS [2]. The first step in this research is to investigate the RCS from an uncoated structure. For the theoretical model, the jet intake is approximated by a circular waveguide terminated by a PEC as shown in Eigure 1.

The RCS from the PEC-terminated guide comes mainly from the rim diffraction and interior irradiation. The transmitted normal modes due to the outside lllumination are responsible for the interior irradiation, which can be reduced by coating the interior waveguide wall. On the other hand, the scattered wave from the edges and the evanescent, modiss is not affected by the coating.

The theorecical study at the Universly of Illnois has shown that when a/d is not too small, the contribut!on to the RCS from the interior irradiation 13 much larger than that from the rim diffraction [1]. The purpose of this section is to lilustrate this point with avallable experimental data and suggest that if the interior irradiation is

Figure 1. A circular waveguide terminated by a perfect electric conductor (PEC) is illuminated by an incident plane wave.
suppressed by coating the wavegulde wall, the RCS from the PEC-terminated guide can be slgnificantly raduced. There are three stops in calculating the RCS from the wavegulde:

1) Find the excited normal modes at the wavegulde opening due to the Incldent plane wave.

1i) Find the phase shifts after the normal modes are reflected from the PEC termination and calculate the rield distribution at the wavegulde opening.
111) Evaluate the radiated energy in the direction of the incldent plane wave from the field distribution at the waveguide opening in step (11) above.

In step (1), the tangential field at the waveguide opening is expanded as a sum of the tangential flelds of the normal modes. The unknown field at the opening is assumed to be that of the Incident field. In this approximation, the choice between the matchings of the tangential electric fleld and magnetic fleld is arbitrary. The magnetic-field matehing is used in this calculation [1], [3].

Since the evanescent modes can not be attenuated by the coating, only the transmitted modes are accounted for in order to lllustrate the effectiveness of the coating in the RCS reduction.

The transmitted normal modes interfere with one another within the waveguide because thelr propagation constants are different, and the radiation pattern is largely dependent on the waveguide length. The Stratton-Chu formula is used along with the Kirchhoff approximation to evaluate the radiation pattern.

The RCS measurements from the PEC-terminated olrcular gulde for 7 different frequencles ranging from $a / \lambda=0.636$ to 1.882 were reported by Brooks and Crispin, Jr. [4]. Their report also contalns the RCS measurements from a olrcular gulde when the PEC termination is removed and the gulde is open-ended. These values would be approximately equal to those from the PEC-terminated gulde if all the transmitted normal modes could be ellminated before bsing reemitted to the outside.

Those experimental values are compared with the theoretloal caloulations for which the contribution only from the interior irradiation is taken into account in order to emphasize the lmportance of the interior Irradiation (Table 1 and Figures 2-8). We have made the following observations:

1. As a/d becomes larger, the RCS from the rim diffraction becomes less significant, and the agreement between the experimental and theoretical values (from interior irradiation only) of RCS from the PEC-terminated circular guide becomes better. This observation conflrms our previous clalm [1] that the interior irradiation from a PEC-terminated circular guide contributes to the RCS much more than the rim diffraction, espectally at high frequency (more then 10 dB for $\mathrm{a} / \lambda>1$). These features are more olearly seen in Figure 9, where the RCS's at a normal incidence are plotted as a function of a / λ. Note that the RCS from a PEC-terminated guide at a normal incidence is approximately equal to that from a circular plate, which is roportional to $\left(a^{2} / \lambda\right)^{2}[5]$. On the other hand, the RCS in terms of the cross sectional area from the rim diffraction does not change much with a variation of a / λ. Thus as a / λ
table 1.
parameters for the res measurements from a circular waveguide

Figure 2a. The RCS's from a PEC-terminated waveguide
(irradiation only) and from an open-ended waveguide (--experimental) as a function of the incident argle (HH polarlzation, $a=3.137 \mathrm{~cm}, f=6.08 \mathrm{GHz}, a / \lambda=0.636$, length $=21.59 \mathrm{~cm})$.
$V V$ polarization $\quad a / \lambda=0.636$

Figure 2b. The RCS's from a PEC-terminated waveguide
(——_experimental,-----theoretical, interior irradiation only) and from an open-ended waveguide (---experimental) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, f=6.08 \mathrm{chz}, \mathrm{a} / \lambda=0.636$, length $=21.59 \mathrm{~cm})$.

Figure Ba. The RCS's from a PEC-terminated waveguide (—_ experimental, -----theoretical, interior irradiation only) and from an open-ended waveguide (-. -experimental) as a function of the Incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=9.13 \mathrm{GHz}, \mathrm{a} \lambda=0.955$, length $=21.59 \mathrm{~cm})$.

VV polarization $a / \lambda=0.955$
 (Experimental)
-........Terminated by PEC
(Theoretical, Interior
Irradiation only)
σ / λ^{2} (in d B)

Open Ended (Experimental)

Figure ib. The RCS's from a FEC-terminated waveguide (experimental, $-\infty-\infty$ - theoretical, interior irradiation only) and from an open-ended waveguide (--experimental) as a function of the incident angle (VV polarization, a $=3.137 \mathrm{~cm}, f=9.13 \mathrm{GHz}, a / \lambda=0.955$, Length $=21.59 \mathrm{~cm}$).

HH polarization

$$
a / x=1.11
$$

Figure Ha. The RCS's from a PEC-terminated waveguide (-_ experimental,------theoretlcal, Interior irradiation only) and from an open-ended waveguide (-- experimental) as a function of the neident angle (HH polarization, a $=3.137 \mathrm{~cm}, r=10.63 \mathrm{GHz}, \mathrm{a} / \mathrm{A}=1.112$, length $=21.59 \mathrm{~cm})$.

VV polarization

$$
a / \lambda=1.11
$$

Terminated by PEC (Experimental)
.........Terminated by PEC (Theoretical, Interior Irradiation only)

Figure Hb. The RCS's from a PEC-terminated waveguide
(-merimental,---- theoretical, interior irradiation only) and from an open-ended waveguide (-experimental) as a function of the incident angle (VV polarization, a $3.137 \mathrm{~cm}, f=10.63 \mathrm{GHz}, \mathrm{a}$. -1.112 , length $=21.59 \mathrm{~cm})$.

HH polarization

Figure Fa. The RCS's from a PEC-terminated waveguide
(- experimental, -----theoretical, Interior Irradiation only) and from an open-ended waveguide (--experimental) as a function of the incident angle (HH polarization, a $=3.137 \mathrm{~cm}, f=12.17 \mathrm{GHz}, \mathrm{a} \lambda=1.237$. length $-21.59 \mathrm{~cm})$.

Figura 5b. The RCS's Srom a PEC-terminated waveguide
(——experimental,-----theoretlcal, interlor (rradiation only) and from an open-ended wavegulde (---experimental) es a function of the incldent angle (VV polarlzation, $=3.137 \mathrm{~cm}, f=12.17 \mathrm{GHz}, \mathrm{a} \lambda=1.237$, length $=21.59 \mathrm{~cm})$.

HH polarization
$a / \lambda=1.43$

Figure 6a. The RCS's from a PEC-terminated wavegulde (——experimental,------theoretlcal, Interior trradation only) and from an open-ended wavegulde (HH -experimental) as a cunction of the incldent angle (HH polarlzation, a $-3.137 \mathrm{~cm}, f=13.68 \mathrm{GHz}, \mathrm{a} \lambda=1.430$, length $=21.59 \mathrm{~cm})$.

VY polarization

$$
r / \lambda^{2}(\text { in } d \theta) \quad a / \lambda=1.43
$$

—— Terminated by PEC (Experimental)
-.......Terminated by PEC

304

HH polarization

$$
\sigma / \lambda^{2}(\text { in } d B) \quad a / \lambda=1.59
$$

Figure Ta. The RCS's from a PEC-terminated waveguide
(——experimental,-----theoretical, interior irradiation only) and from an open-ended waveguide (—— experimental) as a function of the incident angle (HH polarization, a $=3.137 \mathrm{~cm}, f=15.20 \mathrm{GHz}, \mathrm{a} \lambda=1.589$, length $=21.59 \mathrm{~cm})$.

VV polarization σ / λ^{2} (ind d) $\quad a / \lambda=1.59$

(Theoretical, Interior
Irradiation only)

Figure Tb. The RCS's from a PEC-terminated waveguide (- experimental, -----theoretical, interior irradiation only) and from an open-ended waveguide (-- experimental) as a function oi the incident angle (VV polarization, a $=3.137 \mathrm{~cm}, f=15.2 \mathrm{c} \mathrm{GHz}, \mathrm{a} / \lambda=1.589$, length $=21.59 \mathrm{~cm}$).

$$
a / \lambda=1.88
$$

Figure Ba. The RCS's from a PEC-terminated waveguide
(- experimental, -----theoretical, interior irradiation only) and from an open-ended waveguide (HH polarizationtal) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=18.0 \mathrm{GHz}, a / \lambda=1.88$, length $=21.59 \mathrm{~cm})$.

VV polarization
$a / \lambda=1.88$
$\sigma / \lambda^{2}(\mathrm{indB})$

35

Figure 9. The rCS's from circular guldes (0Δ PEC-terminated, [] [open-ended) at a normal incidence as a function of a/ג. (-----approximate RCS from a circular plate [5].)

Abstract

Increases, the difference between the RCS's from the interior Lrradiation and the rim diffraction becomes large. 2. At large incldent angle, the rim diffraction contributes slgnlficantly to the total RCS, and the coating may not be as offeotlve as in the case at a small incident angle, especially for a small value of a/ λ.

From above results, we conclude that suppressing the interior Irradiation by coating the Interlor waveguide wall or by other means WIll be very offective in reducing the RCS from the PEC-terminated guide, especially for the case with a large value of a/d (>1) at a small incident angle.

(3) The RCS from an uncoated guide terminated by a PEC including the effect of the rim diffraction

Scattering from the rim of an open-ended waveguide has been studied by many authors [6]. The slmplest method would be the standard geometrical theory of diffraction (GTD). However, the theory falls near the caustic and the shadow boundary [7]. More extensive calculations using the Wlener-Hopf technique [6] provide a better solution, but thls method can be applied only to a limlted number of geometrical cases. To Improve the solution of the GTD near the caustic and the shadow boundary, the equivalent-current (EC) method based on the GTD was suggested [8-9]. It has been reported that the EC method is valid only near the caustic [10-11] or near tre normal incidence to the edge [12]. The purpose of this section is to lllustrate that the EC method is valid not only near the caustic but also over a wide range of the
incldent angle, uning a simple example of the soattering from an open-ended alrcular gulde. One notlceable advantage of thla method 1 s that this technique can be extended to problems of artitrary shape with relatively simple mathematical manlpulations.

First, we evaluated the RCS from an open-ended circular gulde ushg the EC method, and compared the results with avallable experimental data and another known method (Wiener-Hopf) [13] (Figures 10 and 11). The agreement is good except for the cases of HH polarization at large inoldent angle. We speculate that the discrepancy in this ase is due to the second-order diffraction. This possibllity is now under Investigation. In fact the EC solution is almost identical to the slmple version of the Wiener-Hopf solution [14], which also shows such a discrepancy.

Fortunately, in our problem the contribution to the RCS from the rear edge of the cylinder becomes large and the error due to the second-order term from the front edge would not be too oritical for the case of HH-polarization at a large incldent angle (Figure 12a). On the other hand, the contribution from the back edge is much smaller than that from the front edge for VV polarization (Figure 12b).

Using the first-order EC method [8], we have added the contribution from the rim diffraction to the RCS from the interior irradiation (Section (2)). The agreement of the theory with the experimental data is improved significantly. Especially, the fine wiggling features of the RCS can be mostly accounted for (Figures 13-19).

As demonstrated in Section (2), the rim diffraction does not contribute much to the total RCS compared to the interior irradiation.

Figure 10a. The RCS's from an open-ended seml-Infinite circular waveguide using the equivalent-current (EC) method (-----) in comparison with the results using the Wiener-Hopf technique (-) and the experimental data (.......) [13] (VV polarlzation, a $=7.56 \mathrm{~cm}$, $f=9.1 \mathrm{GHz}, \mathrm{a} / \lambda=2.29$).

Flgure 10b. The RCS's from an open-ended semi-Infinite eircular wavegulde using the equivalent-current (EC) method (-----) In comparison with the results using the Wiener-Hop! technique (-) and the experimental data (.........) [13] (HH polarization, a - 7.56 cm , $f=9.1 \mathrm{GHz}, \mathrm{a} / \lambda=2.29)$.

Figure ila. The RCS's from an open-ended semi-infinite circular wavegulde using the equivalent-current (EC) method ($-\infty-\infty$) in comparison with the results using the Wiener-Hopf technique (\longrightarrow) and the experimental data (.........) [13] (VV polarlzation, a 3.81 cm, $f=9.1 \mathrm{GHz}, a / \lambda=1.16)$.

Figure 110. The RCS's from an open-ended seml-infinite circular wavegulde using the equivalent-current (EC) methoc (-----) in comparison with the results using the Wiener-Hopf technique (\longrightarrow) and the experimental data (........) [13] (HH polarization, a $=3.81 \mathrm{~cm}$, $\rho=9.1 \mathrm{GHz}, \mathrm{a}$ 人 -1.16).

Flgure 12a. The RCS from the rim diffraction of a pec-terminated circular waveguide assuming the interior irradiation is completely suppressed (——total, - - - - from front edge only, - - . from back edge only, HH polarization, $a=3.81 \mathrm{~cm}, r=9.1 \mathrm{CHz}, \mathrm{a} / \lambda=1.16$)

Figure 12b. The RCS from the rim diffraction of a PEC-terminatec. clrcular waveguide assuming the interior Irradiation is complately suppressed (—total,--- irom front edge only, - - from back edge only, VV polarlzation, a - $3.81 \mathrm{~cm}, f=9.1 \mathrm{GHz}$ a/ג $=1.16$

Figure 13a. The RCS's from a PEC-terminated wavegulde
(———experimental;........theoretical, interior
irradiation only:--- - theoretical, rim diftraction included) as a function of the Incldent angle (HH polarization, $a=3.137 \mathrm{~cm}, f=6.08 \mathrm{CHz}, a / \lambda=0.636$, length $-21.59 \mathrm{~cm})$.

Figure 13b. The RCS's from a PEC-terminated waveguide (-_ experimental,....... theoretical, interlor irradiation only;---- theoretical, rim diffraction included) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, f=6.08 \mathrm{CHz}, a / \lambda=0.636$,
length $=21.59 \mathrm{~cm}$).

Figure 14a. The RCS's Prom a PEC-terminated waveguide
(—_exterimental,........theoretlcal, interior
irradiation only; - - - theoretical, rim diffraction
included) as a function of the incident angle
(HH polarization, $a=3.137 \mathrm{~cm}, f=9.13 \mathrm{GHz}, a / \lambda=0.955$,
length $=21.59 \mathrm{~cm})$.

Figure 15a. The RCS's from a PEC-terminated waveguide (—_ experimental,........ the retical, interior irradiation only;-m--theoretical, rim diffraction included) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=10.63 \mathrm{GHz}, a / \lambda=1.112$, length - 21.59 cm).

Figure 15b. The RCS's from a PEC-terminated waveguide
(-_experimental,...... theoretical, interior irradiation only;----theoretical, rim diffraction included) as a function of the incident angle (VV polarlzation, $a=3.137 \mathrm{~cm}, f=10.63 \mathrm{GHz}, a / \lambda=1.112$,
length $=21.59 \mathrm{~cm}$).

Figure 16a. The RCS's from a PEC-terminated waveguide (——experimental,...... theoretical, interior irradiation only;--- theoretical, rim diffraction included) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, \mathrm{f}=12.17 \mathrm{chz}, \mathrm{a} / \lambda=1.237$. length $=21.59 \mathrm{~cm})$.

[^0]

Figure 17a. The RCS's from a PEC-terminated waveguide
(__ experimental,........ theoretical, interior irradiation only; ----theoretical, rim diffraction included) as a function of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, f=13.68 \mathrm{CHz}, \mathrm{a} \lambda=1.430$, length $=21.59 \mathrm{~cm}$).

Eigure 17b. The RCS's from a PEC-terminated waveguide
(——experimental,........ theoretical, interior irradiation only; - - - theoretical, rim diffraction included) as a function of the incident angle (VV polarization, $a=3.137 \mathrm{~cm}, f=13.68 \mathrm{GHz}, a / \lambda=1.430$, length $=21.59 \mathrm{~cm})$.

Figure 18a. The RCS's srom a PEC-terminated wavegulde (——experimental,........ theoretical, interior irradiation only;---- theoretical, rim diffraction included) as a runction of the incident angle (HH polarization, $a=3.137 \mathrm{~cm}, r=15.20 \mathrm{GHz}, a / \lambda=1.589$, length $=21.59 \mathrm{~cm})$.

Figure 18b. The RCS's from a PEC-terminated waveguide (——experimental,....... theoretical, interlor irradiation only; - - - theoretical, rim diffraction included) as a function of the incident angle (VV polarlzation, a $=3.137 \mathrm{~cm}, \quad \mathrm{f}=15.20 \mathrm{GHz}, \mathrm{a} / \mathrm{\lambda}=1.589$. length $=21.59 \mathrm{~cm}$).

Figure 19a. The RCS's spom a PEC-terminated wavegulde (experimental,theoretical, interior irradiation only; - - - theoretical, rim diffraction included) as a function of the incldent ansle (HH polarization, $=3.137 \mathrm{~cm}, \mathrm{r}=18.0 \mathrm{GHz}, \mathrm{a} / \lambda=1.88$, length $=21.59 \mathrm{~cm})$.

However, if the transmitted modes due to ihe outside illumination can be attenuated by the coat ing, we expect the contributions from other than the interior Irradiation, e.8., the rim diffraction, will be significant enough to affect the overall RCS. Thus, we have to include the effect of the rim diffraction in our calculation when comparing our analysis with future experimental data of the RCS from a coated guide. Further detalls are glven In Section (4) below.
(4) The outlines of the proposed experiments for the RCS reduction from a oirculai wavegulde coated with lossy materlal

The RCS from the jet intake is malnly due to the rim diffraction and interior irradiation. The main goal of our research is to reduce, as much as possible, the interior irradlation from the jet intake. One way to achieve this goal is to coat the interior wall of the jet intake with a lossy material. Once the wave is transmitted from the outside dllumination, the wave wIll attenuate as it propagaces through the Interior of the jet Intake before it scatters back to the outside. For our theoretical model, we approximate the jet intake by a cylindrical wavegulde terminated by a PEC. From the theoretical study at the University of Illinols, the following results are obtained:

1. The interior irradiation from a circular waveguide terminated by a PEC contributes to the RCS much more than the rim diffraction (more than 10 dB for $\mathrm{a} / \mathrm{\lambda}>1$).
2. A very lossy magnetic material is suggested for coating at low frequency $(a / \lambda>1)$. With a layer thlckness less than 1% of the radius, the RCS from a 7 -radius-long circular waveguide ($a / \lambda=1.2$)
terminated by a PEC can be reduced by more than 10 dB over a broad l.ncldent angle, using the best noating material reported in the IIterature.
3. At hlgh frequency $(a / \lambda>3)$. the modal separation between the highly attenuated and the lowly attenuated modes occurs if the coating material is too lossy. This is not desirable in the application of the RCS reduction because the unattenuated normel modes will cause a large RCS in a certain Incident angle. With the modal separation, lncreasing the coating thickness would not nelp much to reduce the RCS because the atteriuation constants of the normal modes do not change much with the coating thickness in this limit. Therefore, at the high frequency, the coating materlal must be less lossy than that at the low frequency. Using the less lossy materlal for the coat. ng , some highmorder modes do not attenuate much and a much thicker layer is required for those modes to attenuate considerably. However, the RCS for a small Incident angle ls malnly due to the low-order modes. Since in most practical applications, the RCS reduction is required only for ? small incident angle, the coating layer does not have to be thick to get a desired RCS reduction.

The purpose of the proposed experiment is to verify our theoretical predictions of the RCS reduction from a circular wavegulde coated with a lossy material. Since the behavior of the normal modes in the lossy waveguide depends strongly on the value of $a / \%$, the lowr and $h i g h-$ frequency cases should be treated separately.

Low-Freguency Case

1. The low-frequency case ls defined when the rield distributions of the normal modes do not change much due to the coating inslde the waveguide. The suggested value of a/d is $1.2,0.8 ., \mathrm{a}=3.95 \mathrm{~cm}$ and $f=9.2 \mathrm{cHz}$. Any combinations of a and λ will be accoptable as far as a/d is close to 1.2.
2. The coating near the opening of the waveguide must be gradual to prevent any mode conversions from hlghly attenuated mcides to lowly attenuated modes. The detalled geometries of the waveguides are shown in Figure 20. Two different coating thicknesses for each waveguide with a tapered coating are suggested. Thus we need rive cyllnders, one empty guide and four coated waveguides. The coating thickness τ is approximately given by $\tau / a=1-28$ depending on the available coating material.
3. The coating material must be very lossy and magnetic, e.g., Crowloy BX113 ($\varepsilon_{r}=12-10.144, \mu_{r}=1.74-33.306$) [15].
4. The scanning angle should be from $\theta=0^{\circ}$ (normal incidence) up to $\theta=45^{\circ}$ at least.
5. The antidipated results of the RCS reduction from our theoretical calculation are shown In Figure 21. Using the best material (Crowloy BX113) that we can find in the literature, more than 10 dB RCS reduction is achieved over a broad incident angle for both VV and $H H$ polarizations with a voating thickness of t/a $=1 \%$. Note that as the interior irradiation is reduced by the coating, the rim diffraction becomes significant enough to affect the overall shape of the RCS.

Figure 20. The geometries of the waveguides for the proposed experiments: a) empty guide, b) coated guide with a tapering distance of a, and c) coated guide with a tapering distance of Ra.

Figure 21a. The RCS's as a function of the Incident angle from a PEC-terminated circular waveguide coated with a lossy material (Crowloy Exil3, $=12-j 0.144, \mu=1.74-j 3.306$) with a coating thickness of $\tau=0,0.025 \mathrm{~cm}$ (0.6% coating) and 0.05 cm (1.3% coating) ($a=3.95 \mathrm{~cm}, f=9.2 \mathrm{dHz}$, $a / \lambda=1.2$, length $=26.46 \mathrm{~cm}$, vV polarization, - - - Interior lr radiation only, rim diffraction included).

> Figure 21b. The RCS's as a function of the Incident angle from a PEC-terminated circular waveguide coated with a loss material (Crowley BXI13, $=12-j 0.144, \mu=1.74-\mathrm{j3.306})$ With a coating thickness of $\tau=0,0.025 \mathrm{~cm}(0.6 \% \mathrm{coating})$ and $0.05 \mathrm{~cm}(1.38$ coating) (a $=3.95 \mathrm{~cm}, \mathrm{f}=9.2 \mathrm{GHz}$, $\mathrm{a} / \lambda=1.2$, length $=26.46 \mathrm{~cm}, \mathrm{HH}$ polarization, included).

High-Frequency Case

1. At this frequency, the change of the modal flelds due to the couting is signlficant. The suggested value of a/d is 3.3, e.g., $a=10 \mathrm{~cm}$ and $:=10 \mathrm{GHz}$. Any comblnatlons of a and λ will be acceptable as far as a/d is close to 3.3.
2. The geometries of the waveguldes for the proposed experiment are the same as those of the low-frequency case as shown Figure 20. As In the low-frequency case, we need flve cyllnders, one empty gulde and four coated guides. $1 / a-1$ - 3 \& depending on the avallable coating material.
3. The coating material should be magnetic and less lossy than that of the low-frequency case, e.g., Poly-2,5-dichlorostyrene $\left(\varepsilon_{r}=7.3\right.$. $\mu_{r}=0.91-j 0.32$) [15].
4. The scanning angle is $\theta=0 \sim 45^{\circ}$.
5. The anticipated results of the RCS reduction from our theoretical calculation are shown in Figure 22. The RCS for the small incident angle $\left(<10^{\circ}\right)$ is reduced significantly even with a thin layer of coating. However, increasing the coating thickness does not help to reduce the RCS as much as in the lowofrequency case. This Indicates the sign of the mode separation between the lowly and highly attenuated modes. For the RCS reduction over a larger incident angle, a thick layer of coating with a less lossy coating material is suggested. Note that the rim diffraction does not affect the overall RCS as much as in the low-frequency case. This confirms our previous statement (Sections (2) and (3)) that the rim diffraction becomes less significant for alarger value of a / λ.

Figure 22a. The RCS's as a function of the incident angle from a PEC-terminated circular waveguide coated with a loss material (poly-2,5-1lchlorostyrene, =7.3,
$\mu=0.91-j 0.32$) with a coating thickness of $\tau=0,0.1 \mathrm{~cm}$ (1% coating) and 0.3 cm (3\% coating) (a $=10 \mathrm{~cm}$, $f=10 \mathrm{GHz}, \mathrm{a} / \lambda-3.33$, length $=60 \mathrm{~cm}, \mathrm{VV}$ polarization, _-- interior irradiation only, _rim diffraction included).

Figure 22b. The RCS's as a function of the incident angle from a PEC-terminated circular waveguide coated with a cosy material (polyr2,5-dichlorostyrene, $=7.3$, $\mu=0.91-j 0.32$) with a coating thickness of $\tau=0,0.1 \mathrm{~cm}$ (18 coating) and 0.3 cm (38 coating) (a $=10 \mathrm{~cm}$, $f=10 \mathrm{GHz}, a / \lambda=3.33$, length $=60 \mathrm{~cm}, \mathrm{HH}$ polarization, - - - - Interior irradiation only, — rim diffraction included).
(5) Experiments on a waveguide coated with very $108 s y$ magnetlo matorial
as a subatitute for a corrurated waveruide

To produce olrcularly polarized (CP) radiation, an cpen-ended corrugated wavegulde is commonly used. Since the corrugated waveguide Is expensive and heavy, it has been suggested that the wavegulde coated WLth lossy magnetio material be used as a substitute for the corrugated wavegulde (See Appendix C). In this reporting period, we have proceeded to perform experiments to verify our tiseory.

There are two requiraments for a coated guide to be a successful CP antenna: The coating material must be magnetic and lossy, and a/d must be sufficiently large.

The first step in these experlments is to produce a relatively pure $T E_{11}$ mode in an overmoded wavegulde. Since it is easy to generate a pure $T E_{11}$ in a waveguide with a smal. 1 radius, we made a wavegulde as shown in Figure 23, which has a smooth transition between the regions of small and large radli. The waveguide consists of a few pleces so that four different sets of waveguide can be assembled without repeating the difflculty in making the pleces at the transition region.

We are in the process of testing those sets of waveguide, and eventually we are golng to measure the effect of the waveguide size on the radiation polarization.

(6) Conclusions and future prospects

In this reporting period, the previous theoretical results are refined and confirmed with available experimental data, and the

Figure 23. The waveguide structure for the experiments on a CP antenna
(not to scale).
experlments to verlfy our theoretloal predictions have been proposed. We summarize our progress as rollows:

1. The analysis of the normal modes in an overmoded wavegulde ds complete. These findings are very useful for the further rescarch on the RCS reduction from waveguide with large value of a/d.
2. It has been confirmed with avallable experimental data that the interior irrediation contributes to the total RCS much more than the rim diffraction, espeolally for the case at amall incident angle with a large value of a / λ.
3. The theory for the rim diffraction is formulated and the theoretical calculations with this theory are In good agreement with available experimental data.
4. It has been theoretically predicted that the interlor irradiation can be reduced significantly by ooating the waveguide with a lossy magnetic materlal. The coating materlal must be less lossy for a larger value of a / λ. Experiments to verify these findings are proposed.
5. A waveguide coated with a very lossy magnetic materlal has been suggested as a substitute for a corrugated wavegulde. Experiments for this possibility are in progress.

Our objective in this researoh is to achieve a large RCS reduction Irom a cavity structure with the following conditions: (1) The structure does not have to be long, and (2) the thin layer of coating is effective over a wide range of Irequency.

As Indicated in the previous report, the coating thickness must increase gradually from the open!ng to the inside of the waveguide to
prevent any undesirable mode conversions from hlghly to lowly
attenuating modes. The properties of the wave propagation at the
transition region are to be investigated in the near future to make the
transition length as short as possible.
We have found that the coating with a single layer ls effeotive for
the RCS reduction over a certain range of frequency. Double layere of
coating are suggested so that the thin coated layer ls effeotive over a
wide range of Prequency.
Eventually, we will expand our research to more realistic cases
where the structure does not have to be a clrcular wavegulde.
The detalls of the ?arther studies are in the proposad attached in
Appendix D of thls report.

REFERENCES

[1] S. W. Lee, Y. T. LO, S. L. Chuang, and C. S. Lee, "Numerical methods for analyzing electromagnetlo scattoring." Semlannual Report to NASA Lewls Researoh Center, Cleveland, Ohlo, Maroh 1985.
[2] S. W. Lee and Y. T. LO, "Eleotromagnatlo soattorlng by oyllinder and aphere," Eleotromagnetic Laboratory Report No. 83-1, Unlversity of Illinols, Urbana, Illinols, 1983.
[3] H. R. Witt and E. L. Price, "Scattering from hollow conducting cylinders," Proo. IEE, Vol. 115, pp. 94-99, January 1968.
[4] H. A. Brooks and J. W. Crispin, Jr., "Comments on the RCS characterlstles of cyllnders, hollow plpes, and oylindrical cavitles," Conductor Corporation Report No. 1801-2-T(0043-147), Ann Arbor, Mlohlgan, Auguat 1966.
[5] J. W. Crlspln, Jr. and A. L. Maffott, "Ra tar oross-section estimation for simple shapes," Proc. IEEE, Vol. 53, pp. 833-848, August 1965.
[6] T. W. Johnson and D. L. Morfatt, "Eleotromagnetlo soatterlng by open circular wavegulde," The Ohlo State Univ. Eleotrosolence Laboratory, Columbus, Ohlo, Technical Report 710816-9, December 1980, and references thereln.
[7] S. W. Lee, Geometrical theory of alffraction. Champalgn: EM Publishing Co.. 1983, Vol. I.
[8] C. E. Ryan, Jr. and L. Peters, Jr., MEvaluation of edge-diffracted flelds including equivalent currents for the caustic regions," IEEE Trans. Antennas Propagat., Vo1. AP-17, pp. 292-299, May 1969; see also correction in Vol. AP-18, p. 275, March 1970.
[9] W. D. Burnside and L. Peters, Jr., "Axialrradar cioss section of finlte cones by the equivalent-ourrent concept with higher-order diffraction," Radio Solence, Vol. 7, pp. 943-948, October 1972.
[10] W. D. Burnside and L. Peters, Jr., "Edge diffracted caustic flelds," IEEE Trans. Antennas Propagat., Vol. APr22, pp. 620-623, Julv 1974.
[11] E. F. Knott and T. B. A. Senlor, "Equi nlent Currents for a ring discontinulty," IEEE Trans. Antennas Propagat., Vol. AP-21, pp. 693m695, September 1973.
[12] G. L. James and V. Kerdemelldis, "Reflestor antenna radiation pattern analysis by equivalent edge currents," IEEE Trans. Antennas Propagat., Vol. AP-21, pp. 19-24, January 1973; see also correction In VO1. APm21, p. 756, September 1973.
[13] C. A. Chuang, C. S. Llang, and S. W. Lee, "High frequenoy scatterling from an openronded semlainfinlte cyllnder." IEEE Trans. antennas Propazat., Vol. AP-23, pp. 770-776, November 1975.
[14] J. J. Bowman, S. W. Lee, and C. Liang, "Hlghefrequency backscattering from a semi-Inflnite hollow oylinder," Proo. IEEE, Vol. 61, pp. 681-682, May 1968.
[15] A. R. Von Hippel, Ed., Dielectrlc Material and Applications. Cambridge, Mass chusetts: Technolgy Press, M.I.T.. 1954.

APPENDIX A

NORMAL MODES IN AN OVERMODED CIRCULAR WAVEGUIDE COATED WITK LOSSY MATERIAL

The proprint of this paper was submitted for publication to IEEE Trans. MLcrowave Theory Tech.

MORMAL MODES IN AN OVERMO: TRCULAR WAVEGUIDE
COATED WITH LOSSY MATERIAL*
C. S. Lee, Student Member IEEE, S. W. Lee, Fellow IEEE,
and S. L. Chuang, Member LEEE

ABSTRACT

The normal modes in an overmoded waveguide coated with a losey material are analyzed, particularly for their attenuetion properties as function of coating material, layer thickness, and frequency. When the coating material is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. This coated guide serves as mode suppressor of the low-order modes, which can be particularly useful for reducing the radar cross section (RCS) of a cavity structure such as a jet engine inlet. When the coating material is very losey, low-order modes fall into two distinct groups: highly and lowly attenuated modes. However, as a/ λ (a redius of the cylinder; $\lambda=$ the free-npace wavelength) increases, the separation between these two groups becomes less distinctive. The attenuation constants of mont of the low-order modes becone anall, and decrease as a function of λ^{2} / a^{3}.

1. INTRONUCTION

In many applications, it is desirable to line the wall of a conventional circular waveguide by a layer of dielectric or magnetic material. With proper design, the lining can significantly alter the modal fields in the waveguide, so as to achieve either lese attenuation or more attenuation for certain modes. The past studies of this problem are mostly connected with microwave/infrared transmission over a long distance [1]-[5]. Two asamptions are usually made:
(1) The waveguide diameter is very large in terms of wavelength (overmoded waveguide); and
(2) The coating material is either nearly lossless [2] - [4] or very lossy [5].

These assumption's simplify the theoretical analysis and oftentimes bring out a clearer physical picture. Nevertheless, in many practical situations, these assumptions are too restrictive. A more general analysis of the coated circular waveguide is needed.

- It is the purpose of this paper to fill in this need. Instead of using the perturbation theory [2], [3], [5], transmission-line model [1] - [4] or asymptotic theory [6], we solve the modal characteristic equation of a coated circular waveguide exactly by a numerical method. This is feasible because of today's fast computers and efficient subroutines for calculat: ing Bessel func* tions with a complex argument.

The organization of the paper is as follows: First, an overview of the normal modes in a coated circular waveguide in comparison with those in an uncoated waveguide is presented. In Section III, the exact characteristic equation for the normal modes in a circular waveguide costed with a lossy
material is given. Three types of normal modes, i.e., the inner mode, the surface mode and the interface mode, are discussed, along with their approximate solutions. Numerical rifults and potential applications are discussed in Section IV.

II. OVERVIEW OF MODAL FIELDS IN A COATED CIRCULAR WAVEGUIDE

Before presenting detailed numerical results, it is beneficial to explain some unique features of the coated waveguide, which are absent in the conventional uncoated waveguide. [igure 1 shows a circular wavegaide with perfectly conducting wall, uniformly coated with material of permittivity $\varepsilon_{2} \varepsilon_{0}$ and permeability $\mu_{2} \mu_{0}$. Both ε_{2} and μ_{2} can be complex, with their negative imaginary parts representing material losses for the present exp(jwt) time convention. The medium in Region I is assumed to be air, i.e., permittivity ε_{0} and permeability μ_{0}. Our problem at hand is to study the normal modes in such a waveguide.

A. Mode Classification

In an uncoated waveguide, the normal modes arf either TE or TM with respect to 2. Here index m describes the azimuthal variatiou the form of sin mb or cos $r 申$, whereas index n descrires the radial distribution in the form of $J_{m}\left(k_{p n} \rho\right)$ or $J_{m}^{\prime}\left(k_{p n} \rho\right)$. In the ascending order of their cutoff frequencies, the dominant modes are

$$
\mathrm{TE}_{11}, \mathrm{TM}_{01}, \mathrm{TE}_{21}, \mathrm{TM}_{11} / \mathrm{TE}_{01}, \ldots
$$

When the waveguide is coated with a dielectric layer, there are no longer pure $T E$ or $T M$ modes. The modes are commonly classified into $H E_{m n}$ and $E H_{m n}$ modes in such a way that, in the limiting case of a vanishingly thin coating [7],

$$
H E_{m n}+T E_{m n i}, \quad \text { and } E H_{m n} \rightarrow T M_{m n}
$$

Figure 1. A coated circular waveguide.

There exist three epecial cases where $H E \sum_{m n}\left(E H_{m n}\right)$ becomes identically or approximately $T E_{m n}\left(M_{m n}\right)$, namely,
(i) circularly symetrical modes (m=0) such as $T E{ }_{0 n}$ and $T M_{0 n}$,
(ii) all modes at frequencies near their cutoff frequencies [8], [9], and
(iii) the low-order modes in an overmoded waveguide coated with loseless material, (inthis limit $H E_{\operatorname{mn}} \rightarrow \operatorname{TM}_{\mathrm{mn}}$, and $E H_{\mathrm{mn}} \rightarrow \mathrm{TE}_{\mathrm{mn}}$).

B. Cutoff Frequencies

Near the cutoff frequency, the normal mode is either quasi TE or TM. In Figures 2 and 3, we plot the cutoff frequencies f_{c} 's of the normal modes in a coated circular guide as a function of layer thickness r. f_{c} is normalized with respect to $\mathrm{f}_{\text {co, }}$, which is the cutoff frequency of the dominant TE_{11} mode in an empty guide of radius a, and is given by

$$
f_{c o}=\frac{1.84118 c}{2 \pi \pi}
$$

where c is the speed of light in free space. Figure 2 shows the modal inversion between the TM_{01} and TE_{21}, which has been previously reported [8], [9]. However, the modal inversion between those two modes is not evident if the coating is of magnetic material $\left(\mu_{2} * 1\right)$ instead of a dielectric material (Figure 3). Coating reduces the cutoff frequencies of the normal modes, especially for the magnetic-coated waveguide. This is due to the fact that, with coating, the modal field distribution tends to concentrate near the air-material interface. Note also that the degeneracy between the TM_{11} and TE_{01} modes near their cutoff frequencies is not removed by the dielectric coating (see Appendix 1), but the degeneracy can be removed by the magnetic coating. The near degeneracy of the $T E_{01}$ mode with the T_{11} mode in a dielectric-coated guide can

Figure 2. The cutoff frequencies in a dielectric-coated waveguide ($\varepsilon_{\boldsymbol{p}}=10$, $\mu_{2}=1$) normalized to that of the TE_{11} mode in an empty guide ($f_{c o}$) as a function of costing thickness.

Figure 3. The cutoff frequencies in magnetic-coated waveguide ($\mu_{2}=10$, $\varepsilon_{2}=1$) normalized to that of the $T E_{11}$ mode in an empty guide ($f_{c o}$) as a function of coating thickness.
cause a serious problem for a long-distance commication utilizing the lowly attenuating $\mathrm{TE}_{\mathrm{OL}}$ mode because there may be a large mode conversion due to a etrong coupling between these two modes [2] - [4]. The magnetic coating can be very useful in this application.

C. Modal Proparation Constant and Power Distribution

When the coating thickness is emall in terms of the free-space wavelength (r/ג <<1), the modal field distribution in the air region and the propagation constant are not much perturbed. As the coating thickness is increased in the manner

$$
\tau / \lambda+\infty \text {, for a fixed value of a }
$$

the low-order modes approach, one by one, their counterparts in the parallelplate waveguide. More precisely, the $H E_{m n}$ modes in a coated circular waveguide approach those modes in a parallel-plate waveguide formed by a perfect magnetic conductor (PMC) and perfect electric conductor (PEC) as sketched in Figure 4 a . The $\mathrm{EH}_{\mathrm{mn}}$ modes approach those modes in a parallel-plate waveguide formed by tro PEC's as shown in Figure 4b.

The propagation constant k_{2} and modal power distribution of the dominant HE_{11} mode in a guide costed with a lossless dielectric material ($\varepsilon_{2}=10$, $\mu_{2}-1$) are shown in Figures 5 and 6 . When the coating thicknesa is small ($\tau^{\prime} / \lambda=\tau / \lambda_{2}<0.05$, where $\lambda_{2}=\lambda / \sqrt{\varepsilon_{2} \mu_{2}}=$ wavelength in Region II), the transverse wave number $k_{\rho l}$ in Region I defined by

$$
k_{\rho 1}=\sqrt{k_{0}^{2}-r_{z}^{2}}
$$

is real, where $k_{0}=2 \pi / \lambda$, and both propagation constant and its power-intensity distribution are very similar to those of an empty guide. When the coating thickness τ is much larger than $0.05 \lambda_{2}, k_{\rho 1}$ is imaginary and its magnitude

Figure 4. Mode transition in coated circular guide at the high-frequency limit. The HE mn modes approach modes in a PMC-PEC guide, and the $E H_{m n}$ approach modes in PEC-PEC guide.

Figure 5. a) Normalized propagation constant and b) radial wave number ($k_{p}{ }^{\text {a }}$) of the HE_{11} mode in a dielectric-coated waveguide ($\varepsilon_{2}=10, \mu_{2}=1$) ss a function of the coating thickness in "effective" wavelength (τ ' = $\tau \sqrt{\varepsilon_{2} \mu_{2}} / \lambda$). The power distributions for the four warked points are shown in Figure 6. The approximate solution of the surface mode using the two-slab model is also shown (see Section III).

Figure 6. Normalized angle-averaged power distribution in watts/ λ^{2} as a function of radial diatance in dielectric-coated waveguide ($\varepsilon_{2}=10$, $\left.\mu_{2}=1\right)$ with four different coating thicknesses. The corresponding points for these diagrams are marked in Figure $5\left(\tau^{\prime}=\tau \sqrt{\epsilon_{2} j_{2}} / \lambda\right)$.
approachee $k_{0} \sqrt{\epsilon_{2} \mu_{2}-I . ~ C o n s e q u e n t l y, ~ t h e ~ m o d a l ~ p o w e r ~ d i s t r i b u t i o n ~ i s ~ l a r g e l y ~}$ concentrated in the dielectric layer (Region II). In Figure 6, the total power carried by the HE_{11} mode is normalized tc 1 watt. In case (4) of Figure 6, more than 99% of the power is confined in the dielectric layer, despite the fact that the dielectric layer (1.06 < $\rho / \mathrm{a}<1$) covers only 12% of the waveguide crose section.

Figures 7 and 8 are similar to Figures 5 and 6 except that the coating material iu magnetic $\left(u_{2}=10\right.$ and $\left.c_{2}-1\right)$. It is most interesting to observe that the transition point where k_{z} becomes imaginary occurs at auch amaller coeting ehickness ($\mathrm{r}=0.05 \lambda_{2}$ in Figure 5 and $\mathrm{r}=0.005 \lambda_{2}$ in Figure 7). Thue, in applicatione where large field concentration in the material layer is desired, the magnetic coating is more effective (more discussion is given in Section IV).

It is worthwhile to note that the normal mede at the transition point is not TEM even though the radial wave number vanishes (see Appendix 2). Thus, both che hybrid-mode method and the techniquee for TEM modee fail to provide the modal fielda at the transition point. Only the direct method as discussed in Appendix 2 is appliceble in this cese.

D. Tranoverse-field Distribution

The traneverse fields of the five lowest-order modes in an uncoated circuler guide and in a coated (dielectric and magnetic) circular guide at the cutofy frequencies and the high-frequency limits are shown in Figure 9. The TE (TM) modes in a circular guide at the cutoff frequencies do not have transerse magnetic (electric) fields, which are not shown in the diagrams. We notice that the nonvanishing fields at the cutoff frequencies are similar to those in an uncoated guide. At high frequency, the fields are confined within the coated

Figure 7. a) Normalized propagation constant and b) radial wave number (kpla) of the $\mathrm{HE}_{1!}$ mode in a magnetic-coated waveguide ($\mu_{2}=10, \varepsilon_{2}=1$) 1s a function of the iining thickness in "effective" wavelength ($\tau^{\prime}=\tau \sqrt{\varepsilon_{2} \mu_{2}} / \lambda$). The power distributions of the four marked points are shown in Figure 8. The approximate solution of the surEace mode using the two-slab model is also shown (see Section III).

Figure 8. Normalized angle-averaged power distribution in watts/ λ^{2} as a function of radial distance in magnetic-coated waveguide ($\mu_{2}=10$, $\left.\varepsilon_{2}-1\right)$ with four different coating thirknesses. The corresponding points for these diagrams are marked in Figure $7\left(r^{\prime}=\tau \sqrt{\varepsilon_{2} \mu_{2}} / \lambda\right)$.

Figure 9. Transverse field distributions of the normal modes in a) empty guide, b) dielectric-coated guide at cutoff frequencies, c) magnatic-coated guide at cutoff frequencies and d) coated guide at the high-frequency limit.
region, se shown in the diagrame where the blank apace indicates that the fields are negligible.
iII. MODAL CHARACTERISTIC EQUATIONS, FIELDS AND CLASSIFICATION

The general problem is shown in Figure 1. Here both the parmittivity $\varepsilon_{2} \varepsilon_{0}$ and permeability $\mu_{2} \mu_{0}$ of the coating material are allowed to be complex. The characteristic equation for the propagation constant k_{z} of a normal mode is well known [10], [11], and we list the final expression, which is solved numerically using Müller's method (available in In:ernational Mathematical Statistical Libraries subroutines):

$$
\begin{gather*}
k_{\rho 1}^{2}\left[F_{1}^{\prime}(a)-\varepsilon_{2} \frac{F_{1}(a) F_{3}^{\prime}(a)}{F_{3}(a)} \frac{k_{\rho 1}}{k_{\rho 2}}\right]\left\{F_{1}^{\prime}(a)-\mu_{2} \frac{F_{1}(a) F_{4}^{\prime}(a)}{F_{4}(a)} \frac{k_{\rho 1}}{k_{\rho 2}}\right] \\
-\left[k_{2} m /\left(k_{0} a\right)\right]^{2} F_{1}^{2}(a)\left[1-\left(k_{\rho 1} / k_{\rho 2}\right)^{2}\right]^{2}=0 \tag{1a}
\end{gather*}
$$

where

$$
\begin{align*}
& k_{\rho 1}^{2}+k_{z}^{2}=k_{0}^{2} \tag{lb}\\
& k_{\rho 2}^{2}+k_{z}^{2}=\varepsilon_{2} \mu_{2} k_{0}^{2} \tag{lc}\\
& F_{1}(\rho)=J_{m}\left(k_{\rho 1} \rho\right), F_{1}^{\prime}(\rho)=J_{m}^{\prime}\left(k_{\rho 1} \rho\right) \tag{1d}\\
& F_{3}(\rho)=J_{m}\left(k_{\rho 2} \rho\right) N_{m}\left(k_{\rho 2} b\right)-N_{m}\left(k_{\rho 2} \rho\right) J_{m}\left(k_{\rho 2} b\right) \tag{le}\\
& F_{3}^{\prime}(\rho)=J_{m}^{\prime}\left(k_{\rho 2} \rho\right) N_{m}\left(k_{\rho 2} b\right)-N_{m}^{\prime}\left(k_{\rho 2} \rho\right) J_{m}\left(k_{\rho 2} b\right) \tag{1f}\\
& F_{4}(\rho)=J_{m}\left(k_{\rho 2} \rho\right) N_{m}^{\prime}\left(k_{\rho 2} b\right)-N_{m}\left(k_{\rho 2} \rho\right) J_{m}^{\prime}\left(k_{\rho 2} b\right) \tag{1g}\\
& F_{4}^{\prime}(\rho)=J_{m}^{\prime}\left(k_{\rho 2} \rho\right) N_{m}^{\prime}\left(k_{\rho 2} b\right)-N_{m}^{\prime}\left(k_{\rho 2}^{\rho} \rho\right) J_{D}^{\prime}\left(k_{\rho 2} b\right) \tag{1h}
\end{align*}
$$

Here $k_{\rho 1}$ and $k_{\rho 2}$ are the radial wave vectors of regions I and II, respectively; ω is the angular frequency; $k_{0}=2 \pi / \lambda_{\text {; }}$ and and b are the radii of the air region and the conducting cylinder, respectively. J_{m} is the Bessel function and N_{m} is the Neman function of order - . The prime indicates differentiation with respect to argument. The modal fields are given by

$$
\begin{align*}
& \mathbf{E}_{\rho}^{\mathrm{I}}=-\left[\left(\mathrm{A} k_{z} / k_{\rho}\right) \mathrm{F}_{1}^{\prime}(\rho)+\left(\mathrm{Bm}_{\mathrm{m}} / \mathrm{k}_{\rho 1} \rho\right) \mathrm{F}_{1}(\rho)\right] \cos \mathrm{m} \phi \tag{2a}\\
& E_{\rho}^{I I}=-\left[\left(C k_{2} / k_{2}\right) F_{3}^{\prime}(\rho)+\left(D_{m} / k_{\rho 2} \rho\right) F_{4}(\rho)\right] \cos m \phi \tag{ab}\\
& E_{\phi}^{I}=\left\{\left\{A k_{z} m /\left(k_{0} k_{\rho 1} \rho\right)\right\} F_{1}(\rho)+B F_{1}^{\prime}(\rho)\right] \sin m \phi \tag{ic}\\
& E_{\phi}^{I I}=\left\{\left\{C k_{z} m /\left(k_{2} k_{\rho 2} \rho\right)\right\} F_{3}(\rho)+D F_{4}^{\prime}(\rho)\right] \text { sin } m \phi \tag{ad}\\
& E_{z}^{I}=-j\left(A k_{\rho 1} / k_{0}\right) F_{1}(\rho) \cos m \phi \tag{ie}\\
& E_{z}^{I I} m-j\left(\mathrm{Ck}_{\rho 2} / k_{2}\right) f_{3}(\rho) \cos m \phi \tag{2f}\\
& H_{\rho}^{I}=-Y_{0}\left[\left(A m / k_{\rho 1} \rho\right) F_{1}(\rho)+\left(B k_{z} / k_{\rho}\right) F_{1}^{\prime}(\rho)\right] \sin m \phi \tag{2g}\\
& H_{\rho}^{I I}=-Y_{2}\left[\left(C m / k_{\rho 2} \rho\right) F_{3}(\rho)+\left(D k_{z} / k_{2}\right) F_{4}^{\prime}(\rho)\right] \sin m \phi \tag{ah}\\
& H_{\phi}^{I}=-Y_{0}\left[F_{1}^{\prime}(\rho)+\left\{B k_{z} m /\left(k_{0} k_{\rho 1} \rho\right)\right\} F_{1}(\rho)\right] \cos m \phi \tag{2i}\\
& H_{\phi}^{I I}=-Y_{2}\left[C F_{3}^{\prime}(\rho)+\left\{\mathrm{Dk}_{2} m /\left(k_{2} \mathrm{~K}_{\rho 2} \rho\right)\right\} \mathrm{F}_{4}(\rho)\right] \cos \mathrm{m} \phi \tag{2j}\\
& H_{z}^{I}=-j Y_{0}\left(B k_{\rho 1} / k_{0}\right) F_{1}(\rho) \text { ain } \boldsymbol{m} \phi \tag{2k}\\
& H_{2}^{I I}=-j Y_{2}\left(D k_{\rho 2} / k_{2}\right) F_{4}(\rho) \sin m \phi \tag{21}
\end{align*}
$$

The convention of $\exp \left[j\left(\omega t-k_{2} z\right)\right]$ is understood and omitted; superscripts I and II indicate Regions I and II (Figure 1), and subscripts ρ, ϕ and z indcate the radial, angular and propagation-directional components of the fields,
respectively; $k_{2}=\sqrt{c_{2} \mu_{2}} k_{0}$; and Y_{0} is the free-apace admittance, $\sqrt{\varepsilon_{0} / \nu_{0}}$ and $Y_{2}=Y_{0} \sqrt{\varepsilon_{2} / \mu_{2}} . A, B, C$ and D are the constante, which are determined by the boundary conditions and the normalization requirement. Those constanta are related by

$$
\begin{align*}
& C=A \sqrt{\varepsilon_{2} H_{2}} k_{\rho 1} F_{1}(a) /\left[k_{\rho 2} F_{3}(a)\right] \tag{3}\\
& D=B \mu_{2} k_{\rho 1} F_{1}(a) /\left[k_{\rho 2} F_{4}(a)\right] \tag{4}\\
& \frac{B}{A}=-\frac{k_{0} k_{\rho 1} a\left[F_{1}^{\prime}(a) / F_{1}(a)-\varepsilon_{2} k_{\rho 1} F_{2}^{\prime}(a) /\left\{k_{\rho 2} F_{3}(a)\right\}\right]}{k_{2} m\left[1-\left(k_{a 1} / k_{\rho ?}^{n}\right)^{2}\right]} \quad(m \neq 0) \tag{5}\\
& \left(\left|\frac{B}{A}\right| \ll 1 \text { for "quaci" TM Modes }\right)
\end{align*}
$$

Equation (5) can also be written as

$$
\begin{equation*}
\frac{A}{B}=-\frac{k_{0} k_{\rho 1} a^{a\left[F_{1}^{\prime}(a) / F_{1}(a)-w_{2}^{k_{p 1}} \dot{F}_{4}^{\prime}(a) /\left\{k_{\rho 2} F_{4}(a)\right\}\right]}}{k_{2}\left[1-\left(k_{\rho 1} / k_{\rho 2}\right)^{2}\right]} \quad(m \neq 0) \tag{6}
\end{equation*}
$$

($\left|\frac{A}{B}\right| \ll 1$ for "quasi" TE modes)
and the elimination of A and B from Eqs. (5) and (6) gives the characteriatic equation (Eq. (1)). There is no mode coupling between the TE and TM modes for $m=0$. Thus, $A=0$ and $B=1$ for the $T M_{0 n}$ modes, and $A=1$ and $B=0$ for the ${ }^{T E}{ }_{0 n}$ modes. We note that there are two degenerate modes for each angular mode index $\|$ except $\mathrm{m}=0$. In the above expression of the fields, we have arbitrarily chosen one of those two modes.

There are three types of normal modes in an overmoded waveguide coated with a lossy material. The properties of these modes are explained below along with the approximate propagation constants and field distributions.

A. Inner Mode

When the coating material is sufficiently lossy and a/dis large, most of the low-order modes become inner modes. The field distributions of these modes are moatly confined in the air region. In the limit as a/ λ becomes infinite, the characteristic equation is simplified to

$$
\begin{equation*}
\left[F_{1}^{\prime}(a) / F_{1}(a)\right]^{2}-(m / x)^{2}=0 \tag{7}
\end{equation*}
$$

where

$$
x=k_{\rho l}
$$

The solutions of this equation are

$$
\begin{array}{lll}
J_{m-1}\left(x_{0}^{+}\right)=0 & \text { for } & E H_{\operatorname{mn}}^{\mathrm{MS}} \\
J_{m \cdot 1}\left(x_{0}^{-}\right)=0 & \text { for } & E H_{-\operatorname{mn}}^{\mathrm{MS}} \tag{9}
\end{array}
$$

Superscript MS indicates the notation by Marcatili and Schmeltzer. This superscript is used to distinguish this notation from the conventional notation. In this case, the field distributions are also simplified. Equations (6) (or equivalently Eq. (5)) in this limit becomes

$$
\begin{array}{lll}
A / B=+1 & \text { for } & E H_{\operatorname{mn}}^{\mathrm{MS}} \\
A / B=-1 & \text { for } & E H_{-\operatorname{mn}}^{\mathrm{MS}} \tag{11}
\end{array}
$$

and the modal fields in the air region are given by

$$
\begin{align*}
& E_{\rho}=-B J_{m-1}\left(k_{\rho 0}^{+} \rho\right) \cos m \phi, \quad H_{\rho}=-Y_{0} E_{\phi} \tag{12a}\\
& E_{\phi}=B J_{m-1}\left(k_{\rho 0}^{+} \rho\right) \sin m \phi, \quad H_{\phi}=Y_{0} E_{\rho} \tag{12b}
\end{align*}
$$

$$
\begin{equation*}
E_{2}=H_{2}=0 \quad \text { for } E H_{m n}^{M 8} \tag{12c}
\end{equation*}
$$

$$
\begin{align*}
& E_{\rho}=-B J_{m+1}\left(k_{\rho O^{\rho}}^{-}\right) \cos m \phi, H_{\rho}=-Y_{0} E_{\phi} \tag{13a}\\
& E_{\phi}=-B J_{m+1}\left(k_{\rho 0}^{-} \rho\right) \sin m \phi, H_{\rho}=Y_{0} E_{\rho} \tag{13b}
\end{align*}
$$

$$
\begin{equation*}
\mathbf{E}_{\mathbf{z}}=\mathbf{H}_{\boldsymbol{z}}=0 \tag{13c}
\end{equation*}
$$

$$
\text { for } \quad E H_{-\operatorname{mn}}^{M S}
$$

where

$$
k_{\rho 0}^{+}=x_{0}^{+} / a, \quad k_{D 0}^{-}=x_{0}^{-} / a
$$

Here x_{0}^{+}and x_{0}^{-}are given in Eqs. (8) and (9), respectively, and B is a constant. The fielde in the lossy region are vanishingly small. The field diagrame of the $E H_{m n}^{M S}$ and $E H_{m i n g}^{M S}$ modes in the air region are shown in Figure 2 in Reference [2]. When a / λ is large but finite, the attenuation constants of the normal modes are small and the fields decay very rapidly from the interface to the lossy layer. In this case, the asymptotic forms of the Bessel functions can be used for the field function in the lossy region. The characteristic functirn of Eq. (1) in this approximation is then simplified to

$$
\begin{align*}
& {\left[x F_{1}^{\prime}(a) / F_{1}(a)\right]^{2}+j x\left[x F_{1}^{\prime}(a) / F_{1}(a)\right]\left(k_{\rho 1} / k_{\rho 2}\right)\left(\varepsilon_{2}+\mu_{2}\right)} \\
& -m^{2}-x^{2} \varepsilon_{2} \mu_{2}\left(k_{\rho 1} / k_{\rho 2}\right)^{2}=0 \tag{14}
\end{align*}
$$

where $x=k_{p l}{ }^{2}$
Suppose $x=x_{0}+\Delta x$ where x_{0} is the solution as a/ λ becomes infinite. Taking the first-order terms in $k_{\rho 1} / k_{\rho 2}$ of the above equation, the ottenuation constant is given by

$$
\begin{equation*}
\alpha_{m n}=\left(\frac{\xi_{m n}}{2 \pi}\right)^{2} \frac{\lambda^{2}}{a^{3}} \operatorname{Re}\left(v_{n}\right) \tag{15e}
\end{equation*}
$$

where

Here ξ_{mn} is the solution of

$$
\begin{array}{lll}
J_{0}^{\prime}\left(\xi_{0 n}\right)=0 & \text { for } & T M_{0 n} \text { and } T E_{0 n} \text { modes }(m-0) \\
J_{m-1}\left(\xi_{m n}\right)=0 & \text { for } & E H_{m n}^{M S} \text { modes }(m \neq 0) \\
J_{m+1}\left(\xi_{m n}\right)=0 & \text { for } & E H_{m n}^{M S} \text { modes }(m \neq 0) \tag{15g}
\end{array}
$$

This is almost the same as the result of Marcatili and Schmeltzer except that the coating material is not restricted to a delectric but can be magnetic as well.

For the first-order approximation of the attenuation constant with m \& 0 , we neglected the last term of Eq. (14). Even though this term is of the second order in $k_{\rho 1} / k_{\rho 2}$, the coefficient $\left|x^{2} \varepsilon_{2} \mu_{2}\right|$ can be large number for the higherorder modes. Thus we expect that the agreement between our exact solution and the first-order solution requiz. arger value of a/ λ for a higher-order mode (more discussion is given in Section IV).
B. Surface Mode

When the coating material is not lossy enough, some of the normal modes become surface modes. The fields of those modes are confined within the thin
layer of the coating and the propagation constants are nearly indepundent of the inner radius a. When a / λ is eufficiently large, the characteriatic equation is approximated to

$$
\begin{equation*}
\left[1+c_{2} \frac{j k_{\rho 1}}{k_{\rho 2}} \cot \left(k_{\rho 2} \tau\right)\right]\left[1-u_{2} \frac{j k_{\rho 1}}{k_{\rho 2}} \tan \left(k_{\rho 2} r\right)\right]=0 \tag{16}
\end{equation*}
$$

where T is the layer thickness, b - a. Aseuming $\left|k_{\rho l}\right| \gg k_{0}$ we obesin

$$
k_{z}= \begin{cases}{\left[c_{2} \mu_{2} k_{0}^{2}-\left\{\left(n-\frac{1}{2}\right) \pi / \tau\right\}^{2}\right\}^{1 / 2}} & \text { for } \operatorname{TM}_{\operatorname{mn}}^{8 u} \tag{17}\\ {\left[\varepsilon_{2} \mu_{2} k_{0}^{2}-(n \pi / \tau)^{2}\right]^{1 / 2}} & \text { for } \pi E_{\operatorname{mn}}^{8 u}\end{cases}
$$

where $n=1,2,3, \ldots$

Superscript su indicates the surface mode. The fields in Region II in this limit can be approximately shown to be

$$
\begin{align*}
& E_{\rho}=C_{1} \cos k_{\rho 2}(b-\rho) \tag{19a}\\
& E_{z}=-j C_{1}\left(k_{\rho 2} / k_{z}\right) \sin k_{\rho 2}(b-\rho) \tag{19b}\\
& H_{\phi}=C_{1} Y_{2}\left(k_{2} / k_{z}\right) \cos k_{\rho 2}(b-\rho) \tag{19c}\\
& E_{\phi}=H_{\rho}=H_{z}=0 \quad \text { for } \quad \text { mun } \\
& E_{\phi}=D_{1} \sin k_{\rho 2}(b-\rho) \tag{19d}\\
& H_{\rho}=-D_{1} Y_{2}\left(k_{z} / k_{2}\right) \sin k_{\rho_{2}}(b-\rho) \tag{20a}\\
& H_{z}=-j D_{1} Y_{2}\left(k_{\rho 2} / k_{2}\right) \cos k_{\rho 2}(b-\rho) \tag{20b}\\
& E_{\rho}=E_{2}=H_{\phi}=0 \tag{20c}
\end{align*}
$$

where C_{1} and D_{1} are constants. Thus the $T \Sigma_{\text {mn }}^{\text {au }}$ mode can be approximated by a normal mode between two PEC elabe and the $T M_{\text {an }}^{\text {Bu }}$ mode by a normal mode between PMC and PEC slabs. The correspondence between the normal modes in a thinly coated waveguide and the surface moder is not unique but depends on the type of coating material. When the coating material is lossless, the $\mathrm{HE}_{\mathrm{mn}}\left(\mathrm{EH}_{\mathrm{mn}}\right)$ modes become $T M_{m i}^{s u}\left(T \varepsilon_{\mathrm{mn}}^{\mathrm{BU}}\right)$ (except $m=0$) as the layer thickness increases. The normel modes with $m=0$ are pure TE or TM as indicated in gection II.

C. Interface Mode

There exists an "interface" mode, which is unique to the waveguide coated with a lossy material. The interface mode has large fields near the interface between the air and lossy regions, and the fielde decay uxponentially to both aide of the interface. Since the fields are limited to the interface region, the attenuation constant is independent of the radius of the waveguide. Ae a/d is sufficiently large and the costing material is sufficiently lossy, the characteristic equation for the interface mode is well-approximated to

$$
\begin{equation*}
\left(1+c_{2} k_{\rho 1} / k_{\rho 2}\right)\left(1+\mu_{2} k_{\rho 1} / k_{\rho 2}\right)=0 \tag{21}
\end{equation*}
$$

The propagation constanta are then evaluated to be

$$
k_{z}=\left\{\begin{array}{lll}
k_{0}\left[\left(\varepsilon_{2}^{2}-\varepsilon_{2} \mu_{2}\right) /\left(\varepsilon_{2}^{2}-1\right)\right]^{1 / 2} & \text { for } & \mathrm{TM}^{\text {in }} \tag{22}\\
k_{0}\left[\left(\mu_{2}^{2}-\varepsilon_{2} \mu_{2}\right) /\left(\mu_{2}^{2}-1\right)\right]^{1 / 2} & \text { for } & \mathrm{TE}^{\mathrm{in}}
\end{array}\right.
$$

The modal fields are given by

$$
\begin{array}{ll}
E_{\rho}^{I}=C_{2} \exp \left[j k_{\rho 1}(a-\rho)\right], & E_{\rho}^{I I}=\left(C_{2} / \varepsilon_{2}\right) \exp \left[-j k_{\rho 2}(\rho-a)\right] \\
E_{z}^{I}=-\left(k_{\rho 1} / k_{z}\right) E_{\rho}^{I} & , \quad E_{z}^{I I}=-\left(k_{\rho 2} / k_{z}\right) E_{\rho}^{I I} \tag{24b}
\end{array}
$$

$$
\begin{align*}
& H_{\phi}^{I}=\left(Y_{0} k_{0} / k_{\varepsilon}\right) \varepsilon_{D}^{I} \quad, \quad H_{\rho}^{I I}=\left(Y_{2} k_{2} / k_{z}\right) \varepsilon_{\rho}^{I I} \tag{24c}\\
& \text { for } \mathrm{Tm}^{\mathrm{in}} \\
& E_{0}^{I}=D_{2} \exp \left(j k_{\rho 1}(a-\rho)\right), E_{0}^{I I}=D_{2} \exp \left(-j k_{\rho 2}(\rho-a)\right] \tag{25a}\\
& H_{\rho}^{I}=-\left(Y_{0} k_{z} / k_{0}\right) \varepsilon_{0}^{I} \quad, H_{\rho}^{I I}=-\left(Y_{2} k_{z} / k_{2}\right) E_{\rho}^{I I} \tag{}\\
& H_{z}^{I}=\left(Y_{0} k_{\rho 1} / k_{0}\right) \varepsilon_{0}^{I} \quad, H_{z}^{I I}=\left(Y_{2} k_{\rho 2} / k_{2}\right) E_{\phi}^{I I} \tag{25c}\\
& \text { for } T E^{\text {in }}
\end{align*}
$$

where all other field componente vanish and C_{2} and D_{2} are constante. Here superscript in indicates the interface mode. From the above resulta, we can see that the interface mode is well-approximated to the normal mode on the eurface of a ammi-infinite lossy material.

There exint two interface modes at most. The fields of the interface mode decay rapidly to both sides of the interface. The conditions for the interface mode to exist are easily recognized from Eqs. (24) and (25) to be

$$
\begin{equation*}
\operatorname{Im}\left(k_{\rho 1^{a}} a\right) \gg 1 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
-\operatorname{Im}\left(k_{\rho 2} \tau\right) \gg 1 \tag{27a}
\end{equation*}
$$

Using the boundary conditions at the interface, Eq. (27a) can be rewritten equiva: ontly either

$$
\begin{equation*}
-i m\left(k_{\rho 1} \varepsilon_{2} \tau\right) \gg 1 \quad \text { for } \pi M^{\text {in }} \tag{27b}
\end{equation*}
$$

or

$$
\begin{equation*}
-\operatorname{Im}\left(\dot{k}_{\rho 1} \mu_{2} \tau\right) \gg 1 \quad \text { for } T E^{\text {in }} \tag{27c}
\end{equation*}
$$

Thus for dielectric coating, only $T M^{i n}$ of the two modes can exist, and only the $\mathrm{TE}^{\mathrm{in}}$ mode can be excited in a waveguide coated with a magnetic material.

IV. mumerical rebults and discussion

A. Loselece Costing

When the coating material is lossless, the normal modes in the overmoded coated waveguide become surface waves as the layer thickness increases, in the order of $\mathrm{HE}_{\mathrm{ml}}, \mathrm{EH}_{\mathrm{m} 1}, \mathrm{HE}_{\mathrm{m}}, \mathrm{EH}_{\mathrm{m} 2}, \ldots(\ldots \neq 0)$ and $\mathrm{EH}_{01}, \mathrm{HE}_{01}, \mathrm{EH}_{02}, \mathrm{HE}_{02}, \ldots$ (me 0) [4]. These features of the normal modes are shown in Figure 10 (Figure 11) for a dielectric (magnetic) coating, where the radial wave numbers are ploted es a function of the layer thickness. The large imaginary part of a complex radial number indicates that the modal field shifts to the waveguide wall and the mode behaves as a eurface mode. Note that the H_{11} in the magnetic-coated guide becomes a surface mode with a much thinner coacing layer then that in the dielectric-coated guide. Otherwise, the onset of a new aurface mode occurs around every quarter-wavelength thickness as the layer thicknese increases.

B. Sliphtly Lossy C, sting

Figure 12 (Figure 13) show the radial wave numbers of the normal modes in a circular guide coated with a alightly losay dielectric (magnetic) material. The general trend of the normal mode with variation of the layer thickness remains similar to that for the waveguide coated with a lossless material (Figures 0 and 11). As shown in Figures 14 and 15, the mode with a large imaginary part of the complex radial number of a surface-wave type has a large attenuation constant. This is due to the fact that the surface mode has a large

Figure 10. Redial wave numbers of the normal modes in a waveguide coated with lossless dielectric material ($\varepsilon_{2}=10, \mu_{2}=1,1 / \lambda=3.33$).

Figure 11. Radial wave numbers of the normal modes in a waveguide coated with a lossless magnetic material ($\mu_{2}=10, \varepsilon_{2}=1, a / \lambda=3.33$).

$$
0.1
$$

Figure 12. Radial wave numbers of the normal modes in a circular waveguide coated with lossy dielectric material ($\varepsilon_{2}=\exp \left(-j \phi_{e}\right), \phi_{e}=5^{\circ}$, $\left.\mu_{2}=1, a / \lambda=3.33\right)$.

Figure 13. Radial wave numbers of the normal modes in a circular waveguide coated with a losay magnetic material ($\mu_{2}=\exp \left(-j \phi_{m}\right), \phi_{m}=5^{\circ}$, $\varepsilon_{2}=1, a / \lambda=3.33$) .

Figure 14. Attenuation constants of the normal modes in a circular waveguide coated with a losay dielectric material ($\varepsilon_{2}=\exp \left(-j \phi_{e}\right)$, $\phi_{e}=5^{\circ}$, $\left.\mu_{2}=1, a / \lambda=3.33\right)$.

Figure 15. Attenuation constants of the normal modes in a circular waveguide coated with a lossy magnetic material ($\mu_{2}=\exp \left(-j \phi_{m}\right)$, $\phi_{m}=5^{\circ}$, $\varepsilon_{2}=1, ~=/ \lambda-3.33$)
field concentration within the losay region near the waveguide wall. It is interestine to note that the HE_{11} in the magnetic-coated guide acquires a vary large attanuation conatant with a much thinner coating layer than that in the dielectric-coated guide. The higher-order modes alsc become aurface moden and acquire large attenuation conetants only at ameh thickar coating layer. C. Very Losey Coating

When the coating material becomes very losay, those features of the normal modss in the waveguide coated with a lossless material disappear. In fact, the propagation constant of the normal mode is independent of the layer thicknese if the losey layer is thicker than the skin depth of the normal mode (Figures $\mathbf{1 6}$ and 17). There ia a mode separation between highly attenuated and lowly attenuated low-order modes. The highly attenuated modes in a dielectric-coated guide are usually lowly attenuated aodes in magnetic-coated guide and vice verse (Figures 18 and 19). In general, the mode separation is leas diecinctive for higher-order modes.

When a / λ is large and the coating material is losay enough, most of the low-order modes are inner modes which are mainly confined in the air region and the attenuation conatants are amall. Marcatili and Schmeltzer [5] evaluated the attenuation constants using the perturbation theory under the assumption that a/d is large and the fields within the lossy region are amall (ase Section III). Figure 20 show the comparison of the exact solutions with the approximate solutions by Marcatili and Schmeltzer for the attenuation constants of the normal modes in a dielectric-coated guide. Here the coating thickness τ is fixed while a/ λ is varied. We nete that the exact and approximate solutions are in better agreement at a larger value of a / λ. The high-order modes usually require a large value of a / λ for good agreement between the exact and approximate solutions (see Section IIIA). This result indicates that the low-order modes become

Figure 16. Radial wave numbers of the normal modes in a circular waveguide coated with a losay dielectric material ($\varepsilon_{2}=\exp \left(-j \phi_{e}\right), \phi_{e}=45^{\circ}$, $\mu_{2}=1, \Delta / \lambda=3.33$).

Figure 17. Radial wave numbers of the normal modes in a circular waveguide coated with lossy magnetic material ($\mu_{2}=\exp \left(-j \phi_{m}\right)$, $=45^{\circ}$, $c_{2}=1, a / \lambda=3.33$).

Figure 18. Attenuation constants of the normal modes in a circular waveguide coated with a $1083 y$ diele $t r i c$ material ($\varepsilon_{2}=\exp \left(-j \phi_{e}\right)$, $\phi_{e}=45^{\circ}$, $\mu_{2}=1,8 / \lambda=3.13$).

Figure 19. Attenuation conatants of the normal modes in a circular wavaguide coated with a lossy magnetic material ($H_{2}=\exp \left(-j \phi_{m}\right), h_{m}=45^{\circ}$, $c_{2}=1, \quad / \lambda=3.33$).

Figure 20. Attenuation constants of the normal modes as function of the inner radius, a, with a fixed layer thicknees ($\tau=0.949 \lambda / \sqrt{R_{2} \mu_{2} \mid}$) in a circular waveguide coated with a losuy dielectric material $\left(\varepsilon_{2}=\exp \left(-j \phi_{e}\right), \phi_{e}=45^{\circ}, \mu_{2}=1, c_{0} / \lambda-3.33\right)$. The mode names in the parentheses correspond to those in Marcatili and Schmeltzer's paper [5].
excluded from the lossy layer near the wall at amaller value of e/d than do the high-order wodes.

Figure 21 shows the comparison of the axact and various approxinate solutions for the attenuation constante of the normal modes in ampnetic-coated circular guide. Most of the low-order modes become inner modes at a large value of a/d as in the case of the dielectric coating (figure 20). However, certain modes are confined near the wall. The $E H_{11}$ mode at a large a/ λ becomen - surface mode (Bection IIIB), whose fields are mainly confined within the lossy ragion and have a large atenuation constane. The exact solution of the atenuation constant is well-approximated by the solution for the surface mode given in Eq. (17). The existence of the surface mode in a waveguide coated with a lossy materie: depends on whether the characteristic equation (Eq. (16)) has a solution close to the value for a surface mode (Eq. (17) or (18)). Also note that the H_{12} mode becomes an interface mode (section IIIC) whose fields are limited to the regioll near the interface between the air and lossy material. The attenuation constant of the interface mode is well-approximated by that of the mode on the aurface of eami-infinite losay material. The criteria for the existence of the interface modes in a coated guide are given in Eqs. (26) and (27). Thus the attentation constant of the interface mode is not as large as that of the surface node but much larger than that of the inner mode (Figure 21).

In Figures 20 and 21, the mode names in the parentheses for the inner modes correspond to the mode names by Marcatili and Schmeltzer [5], where the field diagrams of those modes are also shown. The surface mode does not exist when the lossy layer becomes infinitely extended. However, the interface mode should exist in a hollow losay circular guide if the conditions in Eq. (26) and (27) are eatisfied.

Figure 21. Attenuation conatants of the normal modes as a function of the inner radius, a, with a fixed layer thickness ($r=0.949 \lambda / \sqrt{ }=2 \mu_{2} \mid$) in a circular waveguide coated with a losey magnetic material ($\left.\mu_{2}=\exp \left(-j \phi_{m}\right), \phi_{m}=45^{\circ}, c_{2}=1, A_{0} / \lambda=3.33\right)$. The mode names in the parenthesfa correspond to those in Marcatili and schmeltzer's paper (5).

D. Mode 8uppressor

80 far, we have seen that the attenuation properties of the normal modes in a coated waveguide depend on the coating waterial, layer thickness and frequency. When the coatiny material is not very losey, the attenuation constants of the normel modes atrongly vary with the layer thickness. Since each mode has its own region where the mode aignificantly attenvated, the coated guide can be used as asimple mode supprescor [12]. The device will be especially useful for eliminating low-order modes. Since loworder modes are mainly responsible for the :adar cross section (OCS) at amall incident angle from a cavity-type structure, coating the cavity wall with a lossy material will be effective in reducing the RCS due to the undesirable interior irradiation from the normal modes in a cavity [13], [14]. In a practical de ign, the transition region between the uncoated and coated sections of the waveguide must be long enough to prevent any mode conversion [15].

E. CP Antenna

When the coating material is sufficiently locay ind a/d is large, most of the normal modes become inner modes if the coating layer is thick enough, i.e., thicker than the skin depthe of the modal fields. Both the magnetic and electric fields of the inner mode are auall near the waveguide wall. The $\forall E E_{11}$ mode in the waveguide coated with a lossy magnetic material becomes an inner mode at much amaller value of a/ λ than that with a lossy dielectric material. The boundary conditions of the HE_{11} mode in this case are similar to those of a corrugated waveguide [16] - [19]; hence, this waveguide can be used as an alternate to the corrugated waveguide to produce circularly polarized radiation or reduce the side-lobe level. Even though the loss of the HE_{11} mode in the coaced waveguide may be higher than that of a well-designed corrugated
waveguide, the coated waveguide is cheaper to build and lighter in weight than the corrugated waveguide, as explained in [20].

v. CONCLUSION

The normal modes in circular guide coated with a lossy material are classified and analyzed, emphasizing the attenuation properties of the normal modes. It is shown that the costing materisl should not be too lossy for the low-order modes to be aignificantly attenuated. A much thinner conting layer is required for the attenuation of the $H E_{11}$ mode when the coating material is magnetic rather than dielectric. The coating technique is especially useful in reducing the radar cross section from a jet engine inle:, a subject that will be reported by us in a future commanication.

When a/ λ in large and the coating matsrial is vary lossy, most of the loworder modes become inner modes, which have small fields within the lossy region and amall attenuation constants. An interesting application of the H_{11} mode in an open-ended waveguide coated with a very lossy magnetic material is that it can be used for circularly polarized radiation [20].

REFERENCES

[1] M. Miyagi, A. Hongo, and S. Kawakami, "Transmission characteriatics of dielectric-coated metallic waveguide for infrared transmission: alab waveguide model," IEEE J. Quantim Electron., vol. QE-19, PP. 136-145, Rebruary 1983.
[2] H. G. Unger, "Lined waveguide," Bnll Syster: Tech. J., vol. 41, pp. 745-768, March 1962.
[3] J. W. Carlin and P. D'Agostino, "Low-loss modes in dielectric lined waveguide," Bell Syatem Tech. J., vol. 50, Pp. 1631-1638, May-June 1971.
[4] J. W. Carlin and P. D'Agostino, "Normal modes in overmoded dielectriclines circular waveguide," Bell System Tech. J., vol. 52, PP. 453-486, April 1973.
[3] E. A. J. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical tranemission and lasers," Bell syatem Tech. J., Pp. 1783-1809, July 1964.
(6) C. Dragone, "High-frequency behevior of waveguides with finite aurface impedances," Bell Syatem Tech. J., vol. 60, pp. 89-116, January 1981.
[7] P. J. B. Clarricoats, "Propagation e'ong unbounded and bounded dielectric rode," Part 1 and Part 2, Proc. IEE, Mon. 409E and 410E, Pp. 170-186, October 1960.
[8] G. N. Teandoulas and W. J. Ince, "Modal inversion in circular waveguidespart 1: theory and phenomenology," IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 386-392, April 1971.
[9] G. N. Teandoulas, "Bandwidth enhancement in dielectric-lined circular waveguides," IEEE Trans. Microwave Theory Tech., vol. MTT-21, PF. 651-654, October 1973.
(10) C. S. Lee, 8. L. Chueng, S. W. Lee, and Y. T. Lo, "Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material," Univ. of Illinois Electromagnetice Leboratory, Urbana, IL, Technical Report, No. 84-13, July 1984.
[11] R. F. Harrington, Time Hermonic Electromagnetic Fields. New York: McGraw-Hill Book Co.. 1961.
[12] T. N. Anderson, "Low loss tranamission using overmoded waveguide, a practical 1981 review of the state of the art," presented at the IEEE AP/MTT-S, Philadelphia Section, Benjamin Franklin 1981 Symposium on Advances in Antenna and Microwave Technology, May 1981.
$[13]$ S. W. Lee, Y. T. Lo, S. L. Chuang, and C. S. Lee, "Numerical methode for analyzing electromagnetic scattering," Semiannual Report to NASA Lewis Research Center, Cleveland, Ohio, March 1985.
[14] H. R. Witt and E. L. Price, "Scattering from hollow conducting cylinders," Proc. IEE, vol. 115, pp. 94-99, Januery 1968.
[15] H. Unger, "Circular wavaguide taper of improved design," Bell Syatem Tech. J., vol. 37, pp. 899-912, July 1958.
[16] M. J. Al-Hakkak and Y. T. Lo, "Circular waveguide and horne with anisotropic and corrugated boundaries," Antenna Laboratory Report No. 73-3, University of Illinois, Urbana, Illinois, 1973.
[17] P. J. B. Clarricoats, A. D. Olver, and S. L. Chong, "Attenuation in corrugated ciruclar waveguide, Part 1, Theory," Proc. IEE, vol. 122, pp. 1173-1179, 1975.
[18] C. Dragone, "Reflection and mode conversion in a corrugated feed," Bell Syatem Tech. J., vol. 56, pp. 835-867, 1977.
[19] C. Dragons, "Attenuation and radiation characteristics of the HE mode," IEEE Trans. Microwave Theory Tech., vol. MTT-28, Pp. 704-710, 1980.
[20] C. 8. Lee, 8. L. Chung, and 8. W. Lee, "A simple version of corrugated waveguide: smooth-walled circular waveguide coated with bossy magnetic material." Apes International Symposium Digest, vol. 1, pp. 303-306, 1985.
[21] M. Abramowitz and I. A. Stigun, Handbook of Mathematical Functions. New York: Dover, 1972.

APPENDIX 1.

degeneracy between the cutoff frequencies of the tm 11 and te pl modes in a dielectric-coated circular waveguide

At the cutoff frequency $\left(k_{z}=0\right)$, the characteristic equation in Eq. (1)

becomes

$$
\begin{aligned}
& J_{1}^{\prime}\left(k_{C M} a\right)\left[J_{1}\left(k_{C M 2} a\right) N_{1}\left(k_{C M 2} b\right)-N_{1}\left(k_{C M 2} a\right) J_{1}\left(k_{C M 2} b\right)\right] \\
& \quad-\sqrt{\varepsilon_{2} / \mu_{2}} J_{1}\left(k_{C M} a\right)\left(J_{1}\left(k_{C M 2} a\right) N_{1}\left(k_{C M 2} b\right)-N_{1}^{\prime}\left(k_{C M 2} a\right) J_{1}\left(k_{C M 2} b\right)\right]=0
\end{aligned}
$$

$$
\begin{equation*}
\text { for } \mathrm{TM}_{11} \tag{A1.1}
\end{equation*}
$$

or

$$
\begin{aligned}
& J_{0}^{\prime}\left(k_{C E}{ }^{a}\right)\left[J_{0}\left(k_{C E 2}{ }^{a}\right) N_{0}^{\prime}\left(k_{C E 2} b\right)-N_{0}\left(k_{C E 2} a\right) J_{0}^{\prime}\left(k_{C E 2} b\right)\right] \\
& \quad-\sqrt{\mu_{2} / \varepsilon_{2}} J_{0}\left(k_{C E} a\right)\left(J_{0}^{\prime}\left(k_{C E 2} a\right) N_{0}^{\prime}\left(k_{C E 2} b\right)-N_{0}^{\prime}\left(k_{C E 2} a\right) J_{0}^{\prime}\left(k_{C E 2} b\right)\right]=0
\end{aligned}
$$

$$
\begin{equation*}
\text { for } \mathrm{TE}_{01} \tag{All}
\end{equation*}
$$

where

$$
\begin{array}{ll}
k_{C M}=\frac{2 \pi}{C} \varepsilon_{C M}, & k_{C M 2}=k_{C M} \sqrt{\varepsilon_{2} \mu_{2}} \\
k_{C E}=\frac{2 \pi}{C} \varepsilon_{C E}, & k_{C E 2}=k_{C E} \sqrt{\varepsilon_{2} \mu_{2}}
\end{array}
$$

Here $f_{C M}$ and $f_{C E}$ are the cutoff frequencies for the $T M_{11}$ and $T E_{01}$ modes, respectively.

Using the recurrence relations of Bessel functione [21], the derivative expresaions in Eqs. (Al.1) and (A1.2) can be eliminated, and we obtain

$$
\begin{align*}
& J_{1}\left(k_{C M} a\right)\left[J_{0}\left(k_{C M 2} a\right) N_{1}\left(k_{C M 2} b\right)-N_{0}\left(k_{C M 2} a\right) J_{1}\left(k_{C M 2} b\right)\right] \\
& -\left[\sqrt{\mu_{2} / \varepsilon_{2}} J_{0}\left(k_{C M} a\right)-\left(1 / \sqrt{\varepsilon_{2} \mu_{2}}-\sqrt{\mu_{2} / \varepsilon_{2}}\right) / k_{C M} a\right]\left[J_{1}\left(k_{C M 2} a\right) N_{1}\left(k_{C M 2} b\right)\right. \\
& \left.-N_{1}\left(k_{C M 2} a\right) J_{1}\left(k_{C M 2} b\right)\right]=0 \tag{A1.3}
\end{align*}
$$

for TM_{11}
and

$$
\begin{aligned}
& J_{1}\left(k_{C E} a\right)\left(J_{0}\left(k_{C E 2} a\right) N_{1}\left(k_{C E 2} b\right)-N_{0}\left(k_{C E 2} a\right) J_{1}\left(k_{C E 2} b\right)\right. \\
& \quad-\sqrt{\mu_{2} / \varepsilon_{2}} J_{0}\left(k_{C E} a\right)\left[J_{1}\left(k_{C E 2} a\right) N_{1}\left(k_{C E 2} b\right)-N_{1}\left(k_{C E 2} a\right) J_{1}\left(k_{C E 2} b\right)\right]=0
\end{aligned}
$$

$$
\begin{equation*}
\text { for } T E_{01} \tag{A1.4}
\end{equation*}
$$

When $\mu_{2}=1$, the $t w o$ characteristic equations are identical, and the cutoff frequencies of the TM_{11} and TE_{01} modes are the same. On the other hand, when the coating material is magnetic ($\mu_{2} * 1$), the degeneracy of these two modes at their cutoff frequencies i.s not present.

APPERDIX 2

pields of the normal modes in a coated circular guide WHEN $k_{\rho 1}=0$ (DIRECT KETHOD).

From Maxwell's equations, we obtain four equations for the normal modes in a circular guide,

$$
\begin{align*}
& \nabla \times \nabla \times \frac{t}{2}-k_{0}^{2} \frac{t}{Z}=0 \tag{A2.1a}\\
& \nabla \cdot \frac{t}{E}=0 \tag{A2.1b}
\end{align*}
$$

First consider the case for $m \geqslant 0$. Due to the aymetry of the problem, we can assume that

$$
\begin{align*}
& E_{\rho}=R_{\rho}(\rho) \cos m \phi e^{-j k_{z} z} \tag{A2.2a}\\
& E_{\phi}=R_{\phi}(\rho) \sin \omega \phi e^{-j k_{z} z} \tag{A2.2b}\\
& E_{z}=R_{z}(\rho) \cos m \phi e^{-j k_{z} z} \tag{A2.2C}
\end{align*}
$$

Since $k_{p l}=0$, from the dispersion relation

$$
\begin{equation*}
k_{z}=k_{0} \tag{A2.3}
\end{equation*}
$$

Substituting Eq. (A2.2) in Eq. (A2.1), three linearly independent equations are obtained:

$$
\begin{align*}
& \rho \frac{d}{d \rho}\left[\rho\left(\frac{d R_{\rho}(\rho)}{d \rho}\right)\right]-m^{2} R_{z}(\rho)=0 \tag{A2.4a}\\
& m \rho \frac{d}{d \rho}\left[\rho R_{\phi}(\rho)\right]+m^{2} R_{\rho}(\rho)-j k_{\rho} \rho^{2} \frac{d R_{z}(\rho)}{d \rho}=0 \tag{A2.4b}\\
& \frac{d}{d \rho}\left[\rho R_{\rho}(\rho)\right]+m R_{\phi}(\rho)-j k_{\rho} \rho R_{z}(z)=0 \tag{A2.4C}
\end{align*}
$$

Solving these coupled equations, the fields in Region I (m*0) are given by

$$
\begin{align*}
& E_{\rho}^{I}=\left(C_{1} \rho^{m+1}+C_{2} \rho^{m-1}\right) \cos m \tag{A2.5a}\\
& E_{\phi}^{I}=\left(C_{1} \rho^{m+1}-C_{2} \rho^{m-1}\right) \sin m \phi \tag{A2.5b}\\
& E_{z}^{I}=\frac{2(m+1) C_{1}}{j k_{0}} \rho^{m} \cos m \phi \tag{A2.5c}\\
& H_{\rho}^{I}=-\gamma_{0}\left[C_{1} \rho^{m+1}+\left(\frac{2 m(m+1) C_{1}}{k_{0}^{2}}-C_{2}\right) \rho^{m-1}\right] \text { ain } m \phi \tag{A2.5d}\\
& H_{\phi}^{I}=Y_{0}\left[C_{1} \rho^{m+1}-\left(\frac{2 m(m+1) C_{1}}{k_{0}^{2}}-C_{2}\right) \rho^{m-1}\right] \cos m \tag{A2.5e}\\
& V_{z}^{I}=-Y_{0} \frac{2(m+1) C_{1}}{j k_{0}} \rho^{m} \text { in } m \phi \tag{A2.5f}
\end{align*}
$$

Using Eq. (A2.3), the fields in Region II (m*0) are obtained from Eq. (2):

$$
\begin{align*}
& E_{\rho}^{I I}=-\left[\frac{D_{1}}{\sqrt{\varepsilon_{2} H_{2}}} G_{3}^{\prime}(\rho)+\frac{D_{2} I}{k_{\rho 2^{\rho}}} G_{4}(\rho)\right] \text { cos m } \phi \tag{A2.6a}\\
& E_{\phi}^{I I}=\left[\frac{D_{1} m}{\sqrt{\varepsilon_{2} H_{2} k_{\rho 2} \rho}} G_{3}(\rho)+D_{2} G_{4}^{\prime}(\rho)\right] \text { an } m \phi \tag{A2.6b}\\
& E_{2}^{I I}=\frac{D_{1} k_{\rho 2}}{j k_{2}} G_{3}(\rho) \cos m \phi \tag{A2.6C}\\
& H_{\rho}^{I I}=-Y_{2}\left[\frac{D_{1} m}{k_{\rho 2} \rho} G_{3}(\rho)+\frac{D_{2}}{\sqrt{\epsilon_{2} \mu_{2}}} G_{4}^{\prime}(\rho)\right] \sin m \phi \tag{A2.6~d}\\
& H_{\phi}^{I I}=-\left[Y_{2} D_{1} G_{3}^{\prime}(\rho)+\frac{D_{2}(\rho)}{\sqrt{\varepsilon_{2} H_{2}} k_{\rho 2^{\rho}}} G_{4}\left(\rho^{\prime}\right)\right] \cos m \phi \tag{A2.6e}
\end{align*}
$$

$$
\begin{equation*}
H_{z}^{I I}=Y_{2} \frac{D_{2} k_{\rho 2}}{J K_{2}} G_{4}(\rho) \sin \omega \phi \tag{A2.6f}
\end{equation*}
$$

where

$$
\begin{align*}
& G_{3}(\rho)=J_{m}\left(k_{\rho 2} \rho\right) N_{m}\left(k_{\rho 2} b\right)-N_{\rho}\left(k_{\rho 2} \rho\right) J_{\rho}\left(k_{\rho 2} b\right) \tag{A2.68}\\
& G_{3}^{\prime}(\rho)=J_{m}^{\prime}\left(k_{\rho 2} \rho\right) N_{m}\left(k_{\rho 2} b\right)-N_{m}^{\prime}\left(k_{\rho 2} \rho\right) J_{m}\left(k_{\rho 2} b\right) \tag{A2.6h}\\
& G_{4}(\rho)=J_{m}\left(k_{\rho 2} \rho\right) N_{m}^{\prime}\left(k_{\rho 2} b\right)-N_{m}\left(k_{\rho 2} \rho\right) J_{m}^{\prime}\left(k_{\rho 2} b\right) \tag{A2.6i}\\
& G_{4}^{\prime}(\rho)=J_{m}^{\prime}\left(k_{\rho 2} \rho\right) N_{m}^{\prime}\left(k_{\rho 2} b\right)-N_{m}^{\prime}\left(k_{\rho 2} \rho\right) J_{m}^{\prime}\left(k_{\rho 2} b\right) \tag{A2.6j}
\end{align*}
$$

Note that the convention of $e^{j\left(\omega t-k_{0} z\right)}$ is understood and omitted. Here $k_{\rho 2}=\sqrt{\epsilon_{2} \mu_{2}-1} b_{0}$, and C_{1}, C_{2}, D_{1} and D_{2} are conetante to be determined by imposing the boundary conditions at the interface between the air and material regions. These constants are related by

$$
\begin{align*}
& C_{1}=\frac{G_{3}(a) k_{\rho 2} D_{1}}{\sqrt{\varepsilon_{2} \mu_{2}} 2(m+1) a^{m}} \tag{A2.7a}\\
& D_{2}=-\sqrt{H_{2} / \varepsilon_{2}} \frac{G_{3}(a)}{G_{4}(a)} D_{1} \tag{A2.7b}\\
& C_{3}=a^{2} C_{1}-\left[\frac{D_{1 m} G_{3}(a)}{\sqrt{\varepsilon_{2} \mu_{2} k_{\rho 2} a}}+D_{2} G_{4}^{\prime}(a)\right] / a^{m-1} \tag{A2.7c}
\end{align*}
$$

The coating thickness is determined by thecharacteristic equation,

$$
\begin{equation*}
\frac{\left(k_{\rho 2^{a}}\right)^{2}}{m+1}+\left(k_{\rho 2} a\right)\left[\frac{G_{3}^{\prime}(a)}{G_{3}(a)} \varepsilon_{2}+\frac{G_{4}^{\prime}(a)}{G_{4}(a)} \mu_{2}\right]-m\left(\varepsilon_{2} \mu_{2}+1\right)=0 \tag{A2.8}
\end{equation*}
$$

Note that the fields are neither $T E$ nor $T M$ and the fields in Region I do not show a Bessel-function dependence of radial distance.

The fielde for m - 0 can be siailarly shown to be

$$
\begin{array}{ll}
\varepsilon_{\rho}^{I}=\frac{j k_{0} C_{10}}{2} \rho & E_{\rho}^{I I}=-\frac{j C_{20}}{\sqrt{C_{2} H_{2}-I}} G_{30}^{\prime}(\rho) \\
H_{0}^{I}=Y_{0} E_{\rho}^{I} & , H_{\rho}^{I I}=Y_{0} C_{2} E_{\rho}^{I I} \tag{A2.9b}\\
E_{z}^{I}=C_{10} & , E_{z}^{I I}=C_{20} G_{30}(\rho)
\end{array} \quad \text { for } T_{0 n} \quad l l
$$

and

$$
\begin{array}{ll}
H_{\rho}^{I}=\frac{j k_{0} D_{10}}{2} \rho & H_{D}^{I I}=-\frac{j D_{20}}{\sqrt{C_{2} H_{2}}-I} G_{40}^{\prime}(\rho) \\
\varepsilon_{0}^{I}=-H_{\rho} / Y_{0} & , \varepsilon_{0}^{I I}=-H_{2} H_{D}^{I I} / Y_{0} \\
H_{z}^{I}=D_{10} & , H_{z}^{I I}=D_{20} G_{40}(\rho) \tag{A2.10c}
\end{array}
$$

where $G_{30}(\rho), G_{30}^{\prime}(\rho), G_{40}(\rho)$ and $G_{40}^{\prime}(\rho)$ are $G_{3}(\rho), G_{3}^{\prime}(\rho), G_{4}(\rho)$ and $G_{4}^{\prime}(\rho)$ with $m=0$, reapectively. All other field components vaniah, and C_{10}, C_{20}, D_{10} and D_{20} are constante which are related by

$$
\begin{align*}
& C_{10}=C_{20} G_{30}(\mathrm{a}) \tag{A2.11a}\\
& D_{10}=D_{20} G_{40}(\mathrm{a}) \tag{A2.11b}
\end{align*}
$$

The coating thickness for $m=0$ is determined by the folloving characteristic equation,

$$
\begin{equation*}
G_{30}(\mathrm{a})+\frac{2 \varepsilon_{2}}{k_{0} \sqrt{\varepsilon_{2} H_{2}-I}} G_{30}^{\prime}(\mathrm{a})=0 \quad \text { for } T M_{0 n} \tag{A2.12a}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{40}(a)+\frac{2 \mu_{2}}{u_{0} a \sqrt{c_{2} \mu_{2}}-1} G_{40}^{\prime}(a)=0 \quad \text { for } E_{0 n} \tag{A2.12b}
\end{equation*}
$$

The fields are either $T \mathbb{T}$ or $T M$ and the fields in the air region show linear dependence of radiel dietance instisad of the usual beseel-function dependence in the case of an uncoated guide.

APPENDIX B

LECTURE NOTES IN RCS: VOLUME I

Thls set of lecture note was presented by professor S. W. Lee at NASA-Lewls Researoh Center on August 1 $1,1985$.
S. W. Lee

Department of Electrical and Computer Engineering GRBANA, TLLINOIS 61801

(217)333-0278

August 1985

Lecture on RCS No. 1

$9: 00-10: 15(75 \mathrm{~min})$	30 min	$10: 45-11: 45(60)$
Overviar	coffee	RCS by PO Calaulation

Evalation sheet \Longrightarrow future lectores

LECTURE NOTES ON RCS VOLUME I

Part A: Overview and One-minute Formulas Page
UMono and Bi-Static Radar 1
${ }^{\circ}$ TE and TM. 2

- Meaning of RCS 3
- Order of Fields. 4
${ }^{\circ}$ RCS From Specular, Edge, and Tip Diffraction 5
${ }^{\circ}$ Creeping Waves 11
${ }^{\circ}$ Resonant Structure and Muitiple Diffraction. 16
Part B: RCS Computation by Physical Optics
- Complex Vector 19
- Plane Wave and Polarization. 20
- Far Field. 24
${ }^{\circ}$ RCS Definition 26
- Physical Optics Scattering 27
- Examples 28

$T E$ and $T M$

$$
\begin{aligned}
& T E: E_{\phi} \text { or } E_{\perp} \\
& T M: E_{\theta} \text { or } E_{11}
\end{aligned}
$$

$$
E_{q}(102) c h .1
$$

meaning of RCS
(1) A hypothetical isotropic scattecer

$A_{e}=7 \mathrm{~m}^{2}$

* Power of incident wave:

$$
p^{i}=5 \text { watter } / \mathrm{m}^{2}
$$

* Power interapted by isotropic satterer is

$$
p^{i n t}=7 m^{2} \times 5 \frac{w}{m^{2}}=35 w
$$

* $p^{\text {int }}$ is irradiated isotrogially

$$
\text { irradiation }=\frac{35 \omega}{4 \pi \text { steradian }}
$$

(2) Airplane's RCS $=7 \mathrm{~m}^{2}$ meaus

Return $1=$ Return 2

(3) RCS $=$ function of $\left[\begin{array}{l}\theta \\ \phi\end{array}\right], f$, polanization

High Freq : $k=\frac{2 \pi f}{c}=\frac{2 \pi}{\lambda}=$ wacnumber $\Longrightarrow \infty$ Total field $\left.\vec{E} \sim e^{i k s}\left\{\frac{1}{k^{0}} \square+\frac{1}{k^{1 / 2}} \square+\frac{1}{k} \square+\cdots\right]\right\}$

ORIGINAL PAGE IS OF POOR QUALITY

Same result for convex or concave

For small $\frac{a}{\lambda} \rightarrow 0$ scattaning $x k^{4}$ which arpiains blue sky.
(2) $\left.a / \lambda \left\lvert\, \begin{array}{c}\text { creeping } \\ \text { wave }\end{array}\right.\right]$

RCS from Continuous specular Points

$$
R C S=\pi\left|R_{1} R_{2}\right| \propto k^{0}
$$

Inly of f

$$
\text { RS }=\left(\frac{4 \pi \cdot \text { Area }}{\lambda^{2}}\right) \cdot \text { Area } \propto k^{2}
$$

Gain factor of an yeative

RCS From Edge

oblique incidence

$$
R C S \approx 0
$$

Vertical metal plate

$$
R C S \approx \frac{R}{4 k} \frac{\left(1 \pm \frac{1}{\sin \theta}\right)^{2}}{\sin \theta}
$$

decrease ar f^{-1}, \pm sign for different polarizations
concave or convex

RCS from Continuone Edge Points

-unod elge

$$
R C S \approx \frac{R}{4 k}\left[\frac{\left(1 \pm \frac{1}{\sin \theta}\right)^{2}}{\sin \theta}\right]
$$

struight efe

$$
R C S=\frac{1^{2}}{4 \pi}\left(1 \pm \frac{1}{\sin \theta_{0}}\right)^{2} \text { indep is } f
$$

2 paralld edges

$R C S \approx \frac{L^{2}}{\pi}(\text { Amy factor of spacing } a)^{2}$

RCS of Open-ended cylinder

$$
R C S \approx \frac{L^{2}}{4 \pi}\left(1 \pm \frac{1}{\sin \theta}\right)^{2}
$$

$$
\begin{aligned}
& \text { * Ot pts } 1 \text { and } 1^{\circ}:\left(1-\frac{1}{\sin 90^{\circ}}\right)=0 \quad\left(E_{\perp}\right. \text { ebe) } \\
& \text { At pts } 2 \text { and } 2^{\prime}:\left(1+\frac{1}{\sin 90^{\circ}}\right)=2 \\
& \text { Aveage }=1
\end{aligned} \quad\left(E_{11} \text { ebe) }\right)
$$

$$
* \quad L=2 \pi a
$$

$$
\text { RCS of cylinder }=\frac{(2 \pi a)^{2}}{4 \pi} \cdot 1^{2}=\pi a^{2}
$$

RCS From tip

$$
\text { RCS } \approx \frac{1}{x^{2}}\left(\frac{\pi}{4} \tan ^{4} \theta_{0}\right)
$$

Freq dependance

object	$R C S$
$J^{\text {Smath }}$	k^{0}
ecge	k^{-1}
tip	k^{-2}

Pay crops on suffice

Cropping rays follow geodesics

sphere: great circle

cone: straight line on a developable surface

Difficulty with Geodesic

Given: Pts $3+4$ on a general surface

No analytical way to determine the geodesic.
Must trail-and-error

Exponential Decry while creeping

Hard polarization $\left(E_{\perp}=E_{x}\right)$

$$
\text { Field Deco }=e^{-1.29\left(\frac{R_{1}}{\lambda}\right)^{1 / 3}\left(\frac{t}{R_{1}}\right)}
$$

$$
\text { or } 11.2\left(\frac{R_{1}}{\lambda}\right)^{1 / 3}\left(\frac{t}{R_{1}}\right) d B
$$

Soft polarization $\left(E_{11}=E_{y}\right)$

$$
\text { Field Dear }=e^{-2.97\left(\frac{R_{1}}{\lambda}\right)^{1 / 3}\left(\frac{t}{R_{1}}\right)}
$$

$$
\sigma \quad 25.8\left(\frac{R_{1}}{\lambda}\right)^{1 / 3}\left(\frac{t}{R_{1}}\right) d B
$$

Specular vs. Creoping

Anc lonth $34=t$ spheical hack

Two primcipel radii at $B: R_{1,2}$

Incident $\quad \vec{E}^{i}=\hat{x} e^{-j k z}$
Buckseationd $\vec{E}^{b s}=\hat{x} \frac{e^{+j} j \neq 2}{x}\left[A_{\text {ropl }}+A_{\text {crp }}\right]$

$$
\begin{aligned}
& \left|A_{\text {rell }}\right|=\sqrt{\left(\frac{R_{1}}{2}\right)\left(\frac{R_{2}}{2}\right)} \\
& \left|A_{\text {crp }}\right|=\left|\frac{R_{3}}{2}\right|\left(\frac{R_{3}}{\lambda}\right)^{1 / 3} 5 \cdot\left(\begin{array}{l}
\text { Hard Field } \\
\text { Decey } \\
\text { p. } 9 c
\end{array}\right)
\end{aligned}
$$

Example next page

Sphere: Creeping Wave

Assume $\frac{a}{\lambda}=1$

$$
\begin{aligned}
& \left|\frac{A_{\text {cup }}}{A_{\text {ny }}}\right|=5 \cdot 1^{1 / 3} \cdot e^{-1.29 \cdot 1^{1 / 3} \cdot \pi}=0.09,-21 \mathrm{~dB} \\
& \text { RCS ripple }=\left(1+\left(\left.\frac{A_{\text {arp }}}{A_{\text {ret }}} \right\rvert\,\right)^{2}=(1.09)^{2}, \quad 0.7 \mathrm{~dB}\right.
\end{aligned}
$$

Assume $\frac{a}{\lambda}=5$

$$
\begin{aligned}
& \left|\frac{A_{\text {corp }}}{A_{\text {ret }}}\right|=0.008,-42 \mathrm{~dB} \\
& R C S \text { ripple }=0.07 \mathrm{~dB}
\end{aligned}
$$

RCS of Resonant structure

ORIGINAL PAGE IS OF POOR QUALITY

Complex Vector
(1) Examples:

- Far-field amplitude vector

Time convention $e^{j \omega t}$

$$
\vec{E}(t)=\operatorname{Re}\left\{\vec{E} e^{j \omega t}\right\}
$$

chaser is a comply rector

$$
\vec{A}=\hat{x}(1+j)+\hat{y} 2 e^{j 40^{\circ}}
$$

- Unit LHCP

$$
\vec{L}=\frac{1}{\sqrt{2}}\left(\hat{x} e^{j 90^{\circ}}+\hat{y}\right)
$$

(2) Magnitude of complex vector:

$$
\begin{aligned}
& |\vec{A}|^{2}=\vec{A} \cdot \vec{A}{ }^{*}=2+4=6 \\
& |\vec{L}|^{2}=\left(\frac{1}{\sqrt{2}}\right)^{2}(1+1)=1 \leftarrow \text { unitary vector }
\end{aligned}
$$

(3) Projection of \vec{A} into \vec{L} :

Component of \vec{A} in the direction of $\vec{L}=\vec{A} \cdot \frac{\vec{L}}{|\vec{L}|}$

$$
\left[\begin{array}{l}
\vec{E}(\vec{r}) \tag{52}\\
\vec{t}(r)
\end{array}\right]=c\left[\begin{array}{llll}
\sqrt{2} & \vec{u}_{1} & & \\
\sqrt{y} & \hat{k}_{1} \times & \times \vec{u}_{1}
\end{array}\right] e^{-j \vec{k}_{1} \cdot \vec{r}}
$$

where

$$
\begin{aligned}
& \vec{k}_{1} \text { - wave vector with magnitude } k=w \sqrt{\mu c} \text { and pointing in the } \\
& \text { direction of propagation of } \mathrm{F}^{1} \\
& 2=y^{-1}=\sqrt{u / \varepsilon}=120 \pi \text { ohm } \\
& \vec{U}_{1} \text { - a unitary vector which describes the polarization of } F^{1} \text { and } \\
& \text { 1s orthogonal to } \vec{k}_{1} \text {. } \\
& C=\text { amplitude of } F^{1} \text { in (watt) }{ }^{1 / 2} \mathrm{~m}^{-1}
\end{aligned}
$$

Plane Wave Example

plane wave poppegating in to

$$
\left(\theta=30^{\circ}, \phi=50^{\circ}\right)
$$

$\vec{E}^{i}(\vec{r})=\left[\hat{\theta}^{i} A+\hat{\phi}^{i} B\right] \sqrt{z} e^{-j \vec{k}^{i} \cdot \vec{r}}$

$$
\begin{aligned}
& \vec{k}^{i}=\left(\frac{\omega}{c}\right)\left[\hat{x} \sin 30^{\circ} \cos 50^{\circ}+\hat{y} \sin 30^{\circ} \sin 50^{\circ}+\hat{z} \cos 50^{\circ}\right] \\
& \hat{\theta}^{i}=\left(\hat{x} \cos 50^{\circ}+\hat{y} \sin 50^{\circ}\right) \cos 30^{\circ}-\hat{z} \sin 30^{\circ}=\hat{\phi}^{i} \times \hat{k}^{i} \\
& \hat{\phi}^{i}=-\hat{x} \sin 50^{\circ}+\hat{y} \cos 50^{\circ}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { If }\left\{\begin{array}{l}
A \equiv 0, \\
B \equiv 0
\end{array}\right. & \text { then the field in } T E\left(E_{1}\right) \\
T M\left(E_{11}\right)
\end{array}
$$

Polarization

Plane wave $\left[\begin{array}{l}\vec{E}(\vec{r}) \\ \vec{H}(\vec{r})\end{array}\right]=c\left[\begin{array}{c}\sqrt{z} \\ \vec{u} \\ \sqrt{Y} \hat{z} \times \vec{u}\end{array}\right] e^{-j k z}$
Polarization vector $\vec{u}=\hat{x} a_{x}+\hat{y} a_{y}$
(1) Linear pol a_{x} and a_{y} are in phase

$$
a_{x}=2 e^{j 35^{\circ}}, a_{y}=3 e^{j 35^{\circ}}
$$

(2) Circular pol $\left|a_{x}\right|=\left|a_{y}\right|$ and 90° out of phase

$$
a_{x}=2 e^{j 35^{\circ}}, a_{y}=2 e^{j\left(35^{\circ} \pm 90^{\circ}\right)}
$$

(3) Elliptical pol. None if the above
\vec{E} vector of different polansations

$$
T=\frac{1}{f}=\text { period }
$$

Far Field
Antenna Handbook 24 Ch. 1 sec $6+7$

$$
\left[\begin{array}{l}
E(\vec{r}) \\
\vec{H}(\vec{r})
\end{array}\right]=\left[\begin{array}{l}
\sqrt{Z} \vec{A}(\vec{k}) \\
\sqrt{r} \hat{k} \times \vec{A}(\vec{k})
\end{array}\right] \frac{e^{-j \hat{k} r}}{r}
$$

where: $Z=Y^{-1}=120 \pi$ ohm $=$ free space impedance $=\sqrt{\mu_{0} / \epsilon_{0}}$ $\vec{r}=(r, \theta, \phi)=$ fon-field obsenation point (in meter) $\vec{k}=(k, \theta, \phi)=$ wave vector (in m^{-1})
$\vec{A}(\vec{k})=$ amplitude vector (in welt ${ }^{1 / 2}$), a complex vector

Characterisics of Far Field
(1) spherical wave
(2) soxpedance relation $|\vec{E}| /|\vec{A}|=120 \pi$ ohm $\quad \begin{gathered}\text { (cully. plane } \\ \text { wave }\end{gathered}$
(3) Triplet: $\vec{E} \perp \vec{H} \perp \vec{k}$

* $\vec{A}(\vec{h})$ in watt ${ }^{1 / 2}$
* Radiation intensity (in all pol) $=|\vec{A}(\vec{K})|^{2} \quad$ untro/steradian

Decomposition of $\vec{A}(\vec{k})$

(1) General $\vec{A}(\vec{k})=A(\vec{k}, \vec{u}) \vec{u}+A(\vec{k}, \vec{v}) \vec{v}$
where: $A(k, \vec{u})=\vec{A}(\vec{k}) \cdot \vec{U} *$
(\vec{u}, \vec{v})-two mitary vectors
(2) Spherical: $\vec{A}(\vec{k})=A_{\theta}(\vec{k}) \hat{\theta}+A_{\beta}(\vec{k}) \hat{\phi}$
(3) Ref-pol and x-pol: $\vec{A}(\vec{k})=A(\vec{k}, \vec{R}) \vec{R}+A(\vec{k}, \vec{C}) \vec{C}$
see section 9 for \vec{R} and \vec{C} definition

Incident $\dot{\vec{E}}^{i}=\sqrt{z} \vec{u}_{1} e^{-j \overrightarrow{k_{1}} \cdot \vec{r}} \quad, \quad z=120 \pi$ ohm Backscattered $\vec{E}^{b s} \sim \sqrt{Z} \vec{A}\left(-\vec{k}_{1}\right) \frac{e^{-j k r}}{r} \quad, r \rightarrow \infty$

$$
\begin{equation*}
\text { RCS of Ref pol }=4 \pi\left|\vec{A}\left(-\vec{k}_{1}\right) \cdot \vec{u}_{1}\right|^{2} \tag{A}
\end{equation*}
$$

I RCS of $x-p o l=4 \pi\left|\vec{A}\left(-\vec{k}_{1}\right) \cdot \vec{v}_{1}\right|^{2}$ no conjingate because $\left(\vec{u}_{1}^{*}\right)^{*}$

Physical Optics Scattering

Incident $\vec{E}^{i}=\sqrt{z} \vec{u}_{1} e^{-j \vec{h}_{1} \cdot \vec{r}} \quad, \quad \begin{aligned} & z=120 \pi \\ & \vec{u}_{1}=\text { unitary rector }\end{aligned}$

Scattered for field:

$$
\vec{E}^{s} \sim \sqrt{z} \vec{A}\left(\overrightarrow{k_{2}}\right) \frac{e^{-j k r}}{r}
$$

where

$$
\vec{A}\left(\vec{k}_{2}\right) \cdot \vec{u}_{2}^{*}=\frac{j k}{2 \pi}\left[\vec{u}_{2}^{*} r\left(\hat{k}_{1} \times \vec{u}_{1}\right)\right] \cdot \iint_{l i t} \hat{N} e^{j\left(\vec{k}_{2}-\vec{x}_{1}\right) \cdot \vec{r}^{\prime}} d s^{\prime}
$$

Example :i of RCS h PO

TE: $\vec{E}^{i}=\sqrt{z} \hat{\phi}_{1} e^{-\dot{j} \overrightarrow{x_{1}} \cdot \vec{r}}$
Eq. (B) , P. 27

$$
\begin{aligned}
& \hat{u}_{1}=\hat{\phi}_{1}=-\sin \phi_{1} \hat{x}+\cos \phi_{1} \hat{y} \\
& \hat{u}_{2}=\left(\hat{u}_{1}\right)^{*} \\
& \hat{k}_{1}=\hat{r}=\sin \theta_{1}\left(\hat{x} \cos \phi_{1}+\hat{y} \sin \phi_{1}\right)+\hat{z} \operatorname{coc} \theta_{1} \\
& \hat{k}_{2}=-\hat{k}_{1}, \hat{N}=-\hat{\xi} \\
& \vec{A}\left(-\hat{x}_{1}\right) \cdot \hat{\phi}_{1}=\frac{j k}{2 \pi}\left(-\cos \theta_{1}\right) \int_{-a / L}^{a / 2} d x^{\prime} \int_{-b / 2}^{b / 2} d y^{\prime} e^{-j 2 k \sin \theta_{1}\left(\cos \phi_{1}+y^{\prime} \alpha{ }^{\prime} /\right.} \\
& E(A), \rho_{1} 26 \\
& R C S= \frac{1}{\pi}\left[k a b \cos \theta_{1} \frac{\sin \alpha}{\alpha} \frac{\sin \beta}{\beta}\right]^{2} \\
& \alpha=\operatorname{ka} \sin \theta_{1} \cos \phi_{1}, \beta=k b \sin \theta_{1} \sin \phi_{1}
\end{aligned}
$$

Example 2 RCS hy PO

$$
\begin{aligned}
& \vec{E}^{i}=\sqrt{z} \hat{x} e^{j k z} \\
& E_{q}(B), p, 2 \eta
\end{aligned}
$$

$$
\begin{aligned}
\hat{u}_{1} & =\hat{u}_{2}^{*}=\hat{x} \\
\hat{k}_{1} & =-\hat{R_{2}}=-\hat{\xi} \\
\hat{N} & =\hat{r}^{\prime}=\sin \theta^{\prime}\left(\hat{x} \cos \phi^{\prime}+\hat{y} \sin \phi^{\prime}\right)+\hat{z} \cos \theta^{\prime} \\
d s^{\prime} & =a^{2} \sin \theta^{\prime} d \theta^{\prime} d \phi^{\prime} \\
\int_{0}^{j 2 x a} \alpha e^{\alpha} d \alpha & =\left[1-e^{j 2 x a}(1-j 2 x a)\right] \\
& \approx j 2 x a e^{j 2 x a}, \text { for Ra>>1 }
\end{aligned}
$$

$$
\begin{aligned}
E_{f}(A), P, 26 & \\
& R C S
\end{aligned}=\pi a^{2} .
$$

EVALDATION SHEET FOR RCS LECTURE NO. 1

(1) Lecture level:

(2) Topics that I like in today's lecture:

(3) For future lectures, I'd like to see the following topics:
\square Modes in waveguides.Scattering by open-ended cylinder: UI approach.Scattering by open-ended cylinuer: OSU approach.

Introduction to GTD.
\square Usage of UI and OSU computer coces developed vader current grants.
\square Others (specify).
(4) Comments:

APPENDIX C

SIMPLE VERSION OF CORRUGATED GUIDE:
CIRCULAR GUIDE COATED WITH LOSSY MAGNETIC MATEMIAL

This set of viewgraphs was presented at the AP meeting in Vancouver, B.C., in June 1985.

SIMPLE VERSION OF CORRUGATED GUIDE: CIRCULAR GUIDE COATED WITH LOSSY MAGNETIC MATERIAL

C.S. Lee, S.L. Chuang, and S.W. Lee

University of Milnols

1. Objective

2. Numerical Results
3. Summary

To produce a CIRCULARLY POLARIZED (CP) Radiation

Corrugated waveguide:

* But expensive and heavy.

Boundary conditions for CP radiation:

$$
E_{\phi}=0 ; \quad H_{\phi}=\left.0\right|_{\text {at boundary }}
$$

* Approximately satisfied by the corrugated waveguide.
* Can be satisfied by a COATED CIRCULAR GUIDE if

1) The coating material is sufficiently Lossy,
2) The material is Magnetic.
$E_{\phi}, H_{\beta}\left(H E_{11}\right)$ at the INTERFACE in the guide coated with a LOSSLESS DIELECTRIC

$E_{\phi_{1}} . H_{\phi}\left(H E_{1 \prime}\right)$ at the INTERFACE
in the guide coated with a LOSSY MAGNETIC MATERIAL

$$
\begin{aligned}
& \text { (0.6 }
\end{aligned}
$$

FIELD DISTRIBUTION

Empty guide

Coated guide
$H E_{\|} I$

RADIATION PATTERN

RADIATION PATTERN

- With Smaller value of a / λ

ATTENUATION vs a / λ
Crowloy $B \times 113^{*}$

* A. Von Hippel, 1954
† P. Clarricoats, 1975

SUMMARY

Advantages of the coated guide over the corrugated guide:

* Less expensive to build
* Lighter in weight
* Wider operating-frequency range

Disadvantage:

* Attenuation may be higher than the well designed corrugated guide.

APPENDIX D

a PROPOSAL FOR CONTINUATION OF NASA NAG 3-475, "NUMERIACL METHODS FOR ANALYZING ELECTROMAONETIC SCATTERING"

NUMERICAL METHODS FOR ANALYZING ELECTROMAGNETIC SCATTERING

Period: November 24, 1985 through November 23, 1986

Amount: $\$ 80,000$
Prepared for
Mr. Boyd M. Bane
Contracting Officer
National Aeronautics and Space Administration
Lewis Research Center
Mail Stop 500-302
Cleveland, OH 44113

Prepared by
S. W. Lee, Y. T. Lo, and S. L. Chang

Department of Electrical ind Computer Engineering
College of Engineering
University of Illinois
Urbana-Champaign Campus
1406 W. Green St.
Urbane, Illinois 61801

August 1985

I. INTRODUCTION

The research grant No. NAG $3-475$ entitled "Numerical methods for analyzing electromagnetic scatering" was first awarded to the University of Illinois i. NASA-Lewis Research Center on Septamber 28, 1983. Dr. Y. C. Cho (Sept. '83June '84) and Mr. Edward J. Rice (June ' 84 - Present) of NASA Lewis Reficerch Center are the rechnical officers. The past and proposed fundings are as follows:

PHASE	PERIOD	FUNDING
I	Sept. 28, 1983-Nov. 23, 1984	$\$ 74,985.00$
II	Nov.24, 1984-Nov. 23, 1985	$\$ 80,009.00$
Nov. 24, 1985-Nov. 23, 1986	$\$ 80,000.00$	

The present continuation proposal is for Phase III.
II. TECHNICAL DISCUSSION

In the past two years, we have made significant progress toward the RCS reduction of a jet engine inlet. We modeled the inlet by an open-ended cylindrical waveguide, and have developed a set of computer codes for calculating the RCS from the rim diffraction [1], [2] and the interior irradiation [2], [3]. Our calculated results are in axcellent agreement with experimental data [4] (Figures 1 and 2). To reduce , ce interior irradiation, a single layer of lossy magnetic material is employed to coat the interior wall of the circular
guide. With proper material, un a very thin layer of coating can be effectivc in reducing the RCS drastically for the low-frequency case. (The radius af the guide is about one wavelength or less. See Figure 3.) In the coming year (Nov. ' 85 to Nov. ' 86), we propose to continue our present study by carrying out the following task:

Task A. Wavequide Transition Study: At high frequency ($A \gg \lambda$), the modes in a coated waveguide are divided into two distinctive groups:

- Highly actenusted surface-wave modes
- Nearly unattenuated inner modes.

The key in reducing RCS is to be able to direct most incoming electromagnetic energy from the radar into the highly attenuated surface-wave modes. Therefore, the study of the proper waveguide transition (Figure 4) becomes a most crucial problem. We shall investigate this problem both theoretically and experimentally.

Task B. Multilayered Coating: At high frequency (a $>3 \lambda$), when the thickness of coating layer is less than $\lambda / 4$, a significant. RCS reduction is achievable only for nearly normal incidence, or more precisely, for

$$
\theta_{0}\left\langle\sin ^{-1}(u .3 \lambda / a), \quad \text { for } a>3 \lambda\right.
$$

where 0_{0} is the incident polar angle measured from the axis of the cylinder (Figure 5). Fer a $=3.3 \lambda$, for example, ${ }_{0}$ is less chan 5°. Thus, to achieve RCS reduction over a broad incident angle at high frequencies, a multilayered coating is necessary. In the nert grant year, we will study carcfilly the multilayered structure in Figure 5. The inner layer is a lossless dielectric
layer, which is used to "attract" the incident electromagnetic energy to the waveguide wali. The outer layer is made of a lossy magnetic material for producing large attenuation.

Task C. Waveguide with Non-circular Cross Section: The use of the finiteelement method to analyze the modal field with non-circular cross section (Figure 6) was initiated in the current grant period. Based on a variational technique, the determination of the modal propagation constant is reduced to that of an eigenvalue. This method is applicable to a waveguide with an arbitrary cross section with nonuniform or multilayered coatings. This effort will be continued.

REFERENCES

[1] C. A. Chuang, C. S. Liang, and S. W. Lee, "High frequency scattering from an open-ended semi-infinite cylinder," IEEE Trans. Antennas Propagat., vol. AP-23, PP. 770-776, November 1975.
[2] R. Mittra, S. W. Lee, and C. A. Chuang, "Analytic modeling of the radar scattering characteristics of aircraft," Univ. of Illinois Electromapnetics Laboratory, Urbana, Illinois, Scientific Report No. 74-1, January 1974.
[3] S. W. Lee, Y. T. Lo, S. L. Chuang, and C. S. Lee, "Numerical methods for analyzing electromagnetic scattering," Semiannual Report to NASA Lewis Research Center, Cleveland, Ohio, March 1985.
[4] H. A. Brooks and J. W. Crispin, Jr., "Coments on the RCS characteristics of cyiinders, hollow pipes, and cylindrical cavities," Corductor Corporation Report No. 1801-2-T(0043-147), Ann Arbor, Michigan, August 1966.

Hh Polarization

Vv Polarization

Figure 2. The RCS's from a PEC-terminated waveguide (__ experimental, - - - theoretical, interior irradiation only) and from an open-ended waveguide (-.- experimental) as a function of the incident angle (vV polarization, $\mathrm{a}=3.137 \mathrm{~cm}, \varepsilon=15.20 \mathrm{GHz}, \mathrm{a} / \lambda=1.589$, $1=21.59 \mathrm{~cm})$.

Vv Polarization

Figure 3. The RCS's (theoretical) as a function of the incident angle from a circular waveguide coated with a losay material (Crowloy BX113, $\varepsilon_{r}=12-j 0.144, \mu_{r}=1.74-\mathrm{j} 3.306$) and terminated by a FEC for layer thicknesses of $\tau=0,0.025 \mathrm{~cm}(0.6 \%$ coating) and 0.05 cm (1.3% coating ($a=3.95 \mathrm{~cm}, f=9.2 \mathrm{GHz}, \mathrm{a} / \lambda=1.2$, length $=26.46$ Cw, vertical polarization).

(b)

Figure 4. (a) The coated guide with a smooth transition of the layer thickness. (b) Step transition, the simplified version of (a).

Figure 5. A waveguide coated with double layers.

Figure 6. A waveguide with an arbitrary cross-section is divided into triangular elements for the use of the finite-element method.

[^0]: Figure 16b. Phe RCS's irom a PEC-terminated wavegulde (—__experimental,........ theorets al, interior irradlation only;----theoretical, rim diffraction included) as a function of the incident angle (VV polarization, a $=3.137 \mathrm{~cm}, f=12.17 \mathrm{GHz}, \mathrm{a} / \lambda=1.237$, length $=21.59 \mathrm{~cm})$.

