847 research outputs found
« Sprich weiter, ich bin im Text » : le pacte autobiographique de Volker Braun dans le Roman de Hinze et Kunze
"Individu et nation" du Centre Interlangues est une collection d'ouvrages publiés en ligne.Dans le Roman de Hinze et Kunze, le lecteur est d'emblée confronté au jeu subtil des multiples voix de la narration, dont le concert peut se lire comme la mise en abyme d'une instance narrative désormais éclatée, remettant volontairement en cause le caractère fictionnel du texte. Au-delà d'une intertextualité fondamentale avec le roman de Diderot Jacques le fataliste, la confusion qui règne dans la détermination de l'instance narrative chez Braun tient à un fréquent déplacement entre les niveaux d'énonciation.Mais la présence des interventions intempestives et répétées d'une voix à la première personne, d'un ‘je' qui prend en charge le texte et qui s'autodéfinit dès l'incipit par une déclaration d'intention d'ordre poétologique comme celui qui écrit, énonceclairement le contrat de lecture que l'auteur passe implicitement avec son lecteur – sous la forme d'un pacte autobiographique tel que l'a défini Philippe Lejeune
Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys
The next generation of wide-field spectroscopic redshift surveys will map the
large-scale galaxy distribution in the redshift range 0.7< z<2 to measure
baryonic acoustic oscillations (BAO). The primary optical signature used in
this redshift range comes from the [OII] emission line doublet, which provides
a unique redshift identification that can minimize confusion with other single
emission lines. To derive the required spectrograph resolution for these
redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for
various instrument resolutions, and line velocities. We foresee two strategies
about the choice of the resolution for future spectrographs for BAO surveys.
For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like
SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of
the doublets. The impact of the sky lines on the completeness in redshift is
less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17}
erg /cm2/s like DESi), the detection improves continuously with resolution, so
we recommend the highest possible resolution, the limit being given by the
number of pixels (4k by 4k) on the detector and the number of spectroscopic
channels (2 or 3).Comment: 5 pages, 1 figur
Quasar Host Environments: The view from Planck
We measure the far-infrared emission of the general quasar (QSO) population
using Planck observations of the Baryon Oscillation Spectroscopic Survey QSO
sample. By applying multi-component matched multi-filters to the seven highest
Planck frequencies, we extract the amplitudes of dust, synchrotron and thermal
Sunyaev-Zeldovich (SZ) signals for nearly 300,000 QSOs over the redshift range
. We bin these individually low signal-to-noise measurements to obtain
the mean emission properties of the QSO population as a function of redshift.
The emission is dominated by dust at all redshifts, with a peak at ,
the same location as the peak in the general cosmic star formation rate.
Restricting analysis to radio-loud QSOs, we find synchrotron emission with a
monochromatic luminosity at (rest-frame) rising from
to between
and 3. The radio-quiet subsample does not show any synchrotron emission,
but we detect thermal SZ between and 4; no significant SZ emission is
seen at lower redshifts. Depending on the supposed mass for the halos hosting
the QSOs, this may or may not leave room for heating of the halo gas by
feedback from the QSO.Comment: 14 pages, 11 figures, accepted by A&
The Extended Baryon Oscillation Spectroscopic Survey: Variability Selection and Quasar Luminosity Function
The SDSS-IV/eBOSS has an extensive quasar program that combines several
selection methods. Among these, the photometric variability technique provides
highly uniform samples, unaffected by the redshift bias of traditional
optical-color selections, when quasars cross the stellar locus
or when host galaxy light affects quasar colors at . Here, we present
the variability selection of quasars in eBOSS, focusing on a specific program
that led to a sample of 13,876 quasars to over a 94.5
deg region in Stripe 82, an areal density 1.5 times higher than over the
rest of the eBOSS footprint. We use these variability-selected data to provide
a new measurement of the quasar luminosity function (QLF) in the redshift range
. Our sample is denser, reaches deeper than those used in previous
studies of the QLF, and is among the largest ones. At the faint end, our QLF
extends to at low redshift and to
at . We fit the QLF using two independent double-power-law models with
ten free parameters each. The first model is a pure luminosity-function
evolution (PLE) with bright-end and faint-end slopes allowed to be different on
either side of . The other is a simple PLE at , combined with a
model that comprises both luminosity and density evolution (LEDE) at .
Both models are constrained to be continuous at . They present a
flattening of the bright-end slope at large redshift. The LEDE model indicates
a reduction of the break density with increasing redshift, but the evolution of
the break magnitude depends on the parameterization. The models are in
excellent accord, predicting quasar counts that agree within 0.3\% (resp.,
1.1\%) to (resp., ). The models are also in good agreement over
the entire redshift range with models from previous studies.Comment: 15 pages, 12 figures, accepted for publication in A&
Characterizing unknown systematics in large scale structure surveys
Photometric large scale structure (LSS) surveys probe the largest volumes in
the Universe, but are inevitably limited by systematic uncertainties. Imperfect
photometric calibration leads to biases in our measurements of the density
fields of LSS tracers such as galaxies and quasars, and as a result in
cosmological parameter estimation. Earlier studies have proposed using
cross-correlations between different redshift slices or cross-correlations
between different surveys to reduce the effects of such systematics. In this
paper we develop a method to characterize unknown systematics. We demonstrate
that while we do not have sufficient information to correct for unknown
systematics in the data, we can obtain an estimate of their magnitude. We
define a parameter to estimate contamination from unknown systematics using
cross-correlations between different redshift slices and propose discarding
bins in the angular power spectrum that lie outside a certain contamination
tolerance level. We show that this method improves estimates of the bias using
simulated data and further apply it to photometric luminous red galaxies in the
Sloan Digital Sky Survey as a case study.Comment: 24 pages, 6 figures; Expanded discussion of results, added figure 2;
Version to be published in JCA
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant
We present a new selection technique of producing spectroscopic target
catalogues for massive spectroscopic surveys for cosmology. This work was
conducted in the context of the extended Baryon Oscillation Spectroscopic
Survey (eBOSS), which will use ~200 000 emission line galaxies (ELGs) at
0.6<zspec<1.0 to obtain a precise baryon acoustic oscillation measurement. Our
proposed selection technique is based on optical and near-infrared broad-band
filter photometry. We used a training sample to define a quantity, the Fisher
discriminant (linear combination of colours), which correlates best with the
desired properties of the target: redshift and [OII] flux. The proposed
selections are simply done by applying a cut on magnitudes and this Fisher
discriminant. We used public data and dedicated SDSS spectroscopy to quantify
the redshift distribution and [OII] flux of our ELG target selections. We
demonstrate that two of our selections fulfil the initial eBOSS/ELG redshift
requirements: for a target density of 180 deg^2, ~70% of the selected objects
have 0.6<zspec<1.0 and only ~1% of those galaxies in the range 0.6<zspec<1.0
are expected to have a catastrophic zspec estimate. Additionally, the stacked
spectra and stacked deep images for those two selections show characteristic
features of star-forming galaxies. The proposed approach using the Fisher
discriminant could, however, be used to efficiently select other galaxy
populations, based on multi-band photometry, providing that spectroscopic
information is available. This technique could thus be useful for other future
massive spectroscopic surveys such as PFS, DESI, and 4MOST.Comment: Version published in A&
Detection of Ly\beta auto-correlations and Ly\alpha-Ly\beta cross-correlations in BOSS Data Release 9
The Lyman- forest refers to a region in the spectra of distant quasars
that lies between the rest-frame Lyman- and Lyman- emissions.
The forest in this region is dominated by a combination of absorption due to
resonant Ly and Ly scattering. When considering the 1D Ly
forest in addition to the 1D Ly forest, the full statistical
description of the data requires four 1D power spectra: Ly and
Ly auto-power spectra and the Ly-Ly real and imaginary
cross-power spectra. We describe how these can be measured using an optimal
quadratic estimator that naturally disentangles Ly and Ly
contributions. Using a sample of approximately 60,000 quasar sight-lines from
the BOSS Data Release 9, we make the measurement of the one-dimensional power
spectrum of fluctuations due to the Ly resonant scattering. While we
have not corrected our measurements for resolution damping of the power and
other systematic effects carefully enough to use them for cosmological
constraints, we can robustly conclude the following: i) Ly power
spectrum and Ly-Ly cross spectra are detected with high
statistical significance; ii) the cross-correlation coefficient is
on large scales; iii) the Ly measurements are contaminated by the
associated OVI absorption, which is analogous to the SiIII contamination of the
Ly forest. Measurements of the Ly forest will allow extension of
the usable path-length for the Ly measurements while allowing a better
understanding of the physics of intergalactic medium and thus more robust
cosmological constraints.Comment: 26 pages, 10 figures; matches version accepted by JCA
A Simple Likelihood Method for Quasar Target Selection
We present a new method for quasar target selection using photometric fluxes
and a Bayesian probabilistic approach. For our purposes we target quasars using
Sloan Digital Sky Survey (SDSS) photometry to a magnitude limit of g=22. The
efficiency and completeness of this technique is measured using the Baryon
Oscillation Spectroscopic Survey (BOSS) data, taken in 2010. This technique was
used for the uniformly selected (CORE) sample of targets in BOSS year one
spectroscopy to be realized in the 9th SDSS data release. When targeting at a
density of 40 objects per sq-deg (the BOSS quasar targeting density) the
efficiency of this technique in recovering z>2.2 quasars is 40%. The
completeness compared to all quasars identified in BOSS data is 65%. This paper
also describes possible extensions and improvements for this techniqueComment: Updated to accepted version for publication in the Astrophysical
Journal. 10 pages, 10 figures, 3 table
- …
