11 research outputs found

    Urinary microbiota and metabolic signatures associated with inorganic arsenic-induced early bladder lesions

    No full text
    Inorganic arsenic (iAs) contamination in drinking water is a global public health problem, and exposure to iAs is a known risk factor for bladder cancer. Perturbation of urinary microbiome and metabolome induced by iAs exposure may have a more direct effect on the development of bladder cancer. The aim of this study was to determine the impact of iAs exposure on urinary microbiome and metabolome, and to identify microbiota and metabolic signatures that are associated with iAs-induced bladder lesions. We evaluated and quantified the pathological changes of bladder, and performed 16S rDNA sequencing and mass spectrometry-based metabolomics profiling on urine samples from rats exposed to low (30 mg/L NaAsO2) or high (100 mg/L NaAsO2) iAs from early life (in utero and childhood) to puberty. Our results showed that iAs induced pathological bladder lesions, and more severe effects were noticed in the high-iAs group and male rats. Furthermore, six and seven featured urinary bacteria genera were identified in female and male offspring rats, respectively. Several characteristic urinary metabolites, including Menadione, Pilocarpine, N-Acetylornithine, Prostaglandin B1, Deoxyinosine, Biopterin, and 1-Methyluric acid, were identified significantly higher in the high-iAs groups. In addition, the correlation analysis demonstrated that the differential bacteria genera were highly correlated with the featured urinary metabolites. Collectively, these results suggest that exposure to iAs in early life not only causes bladder lesions, but also perturbs urinary microbiome composition and associated metabolic profiles, which shows a strong correlation. Those differential urinary genera and metabolites may contribute to bladder lesions, suggesting a potential for development of urinary biomarkers for iAs-induced bladder cancer

    Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination

    No full text
    MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV) GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2 superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates, and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly, epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the biomedical practice for vaccination, and haplotype clusters represented the similarities among individuals during T-cell response establishment. Cross-validation proved the patterns observed through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types of major amino acid residue replacements involving four in nine hotspots, which minimally influenced the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing HTNV vaccine pursuit

    Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination

    No full text
    MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV) GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2 superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates, and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly, epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the biomedical practice for vaccination, and haplotype clusters represented the similarities among individuals during T-cell response establishment. Cross-validation proved the patterns observed through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types of major amino acid residue replacements involving four in nine hotspots, which minimally influenced the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing HTNV vaccine pursuit
    corecore