241 research outputs found

    NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile Virus NS2B-NS3 protease

    Get PDF
    BACKGROUND The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the presence of an inhibitor. METHODS In this work, nuclear magnetic resonance (NMR) spectroscopy of isotope and spin-labeled samples of the West Nile virus protease was used to investigate the occurrence of equilibria between open and closed conformations in solution. FINDINGS In solution, the closed form of the West Nile virus protease is the predominant conformation irrespective of the presence or absence of inhibitors. Nonetheless, dissociation of the C-terminal part of the NS2B cofactor from the NS3 protease (open conformation) occurs in both the presence and the absence of inhibitors. Low-molecular-weight inhibitors can shift the conformational exchange equilibria so that over 90% of the West Nile virus protease molecules assume the closed conformation. The West Nile virus protease differs from the dengue virus protease, where the open conformation is the predominant form in the absence of inhibitors. CONCLUSION Partial dissociation of NS2B from NS3 has implications for the way in which the NS3 protease can be positioned with respect to the host cell membrane when NS2B is membrane associated via N- and C-terminal segments present in the polyprotein. In the case of the West Nile virus protease, discovery of low-molecular-weight inhibitors that act by breaking the association of the NS2B cofactor with the NS3 protease is impeded by the natural affinity of the cofactor to the NS3 protease. The same strategy can be more successful in the case of the dengue virus NS2B-NS3 protease.The project was funded by the Australian Research Council (http://www.arc.gov.au), grant DP0877540

    Structural basis for the function of the N-terminal domain of the ATPase CopA from Bacillus subtilis.

    Get PDF
    The solution structure of the N-terminal region (151 amino acids) of a copper ATPase, CopA, from Bacillus subtilis, is reported here. It consists of two domains, CopAa and CopAb, linked by two amino acids. It is found that the two domains, which had already been separately characterized, interact one to the other through a hydrogen bond network and a few hydrophobic interactions, forming a single rigid body. The two metal binding sites are far from one another, and the short link between the domains prevents them from interacting. This and the surface electrostatic potential suggest that each domain receives copper from the copper chaperone, CopZ, independently and transfers it to the membrane binding site of CopA. The affinity constants of silver(I) and copper(I) are similar for the two sites as monitored by NMR. Because the present construct "domain-short link-domain" is shared also by the last two domains of the eukaryotic copper ATPases and several residues at the interface between the two domains are conserved, the conclusions of the present study have general validity for the understanding of the function of copper ATPases

    3D Structure Determination of an Unstable Transient Enzyme Intermediate by Paramagnetic NMR Spectroscopy

    Get PDF
    Enzyme catalysis relies on conformational plasticity, but structural information on transient intermediates is difficult to obtain. We show that the three-dimensional (3D) structure of an unstable, low-abundance enzymatic intermediate can be determined by nuclear magnetic resonance (NMR) spectroscopy. The approach is demonstrated for Staphylococcus aureus sortase A (SrtA), which is an established drug target and biotechnological reagent. SrtA is a transpeptidase that converts an amide bond of a substrate peptide into a thioester. By measuring pseudocontact shifts (PCSs) generated by a site-specific cysteine-reactive paramagnetic tag that does not react with the active-site residue Cys184, a sufficient number of restraints were collected to determine the 3D structure of the unstable thioester intermediate of SrtA that is present only as a minor species under non-equilibrium conditions. The 3D structure reveals structural changes that protect the thioester intermediate against hydrolysis

    Solution Structures of a Cyanobacterial Metallochaperone: INSIGHT INTO AN ATYPICAL COPPER-BINDING MOTIF *

    Get PDF
    The Atx1 copper metallochaperone from Synechocystis PCC 6803, ScAtx1, interacts with two P(1)-type copper ATPases to supply copper proteins within intracellular compartments, avoiding ATPases for other metals en route. Here we report NMR-derived solution structures for ScAtx1. The monomeric apo form has a betaalphabetabetaalpha fold with backbone motions largely restricted to loop 1 containing Cys-12 and Cys-15. The tumbling rate of Cu(I)ScAtx1 (0.1-0.8 mm) implies dimers. Experimental restraints are satisfied by symmetrical dimers with Cys-12 or His-61, but not Cys-15, invading the copper site of the opposing subunit. A full sequence of copper ligands from the cell surface to thylakoid compartments is proposed, considering in vitro homodimer liganding to mimic in vivo liganding in ScAtx1-ATPase heterodimers. A monomeric high resolution structure for Cu(I)ScAtx1, with Cys-12, Cys-15, and His-61 as ligands, is calculated without violations despite the rotational correlation time. (2)J(NH) couplings in the imidazole ring of His-61 establish coordination of N(epsilon2) to copper. His-61 is analogous to Lys-65 in eukaryotic metallochaperones, stabilizing Cu(I)S(2) complexes but by binding Cu(I) rather than compensating charge. Cys-Cys-His ligand sets are an emergent theme in some copper metallochaperones, although not in related Atx1, CopZ, or Hah1. Surface charge (Glu-13) close to the metal-binding site of ScAtx1 is likely to support interaction with complementary surfaces of copper-transporting ATPases (PacS-Arg-11 and CtaA-Lys-14) but to discourage interaction with zinc ATPase ZiaA and so inhibit aberrant formation of copper-ZiaA complexes

    Analysis of the solution conformations of T4 lysozyme by paramagnetic NMR spectroscopy

    Get PDF
    A large number of crystal structures of bacteriophage T4 lysozyme (T4-L) have shown that it contains two subdomains, which can arrange in a compact conformation (closed state) or, in mutants of T4-L, more extended structures (open state). In solution, wild-type T4-L displays only a single set of nuclear magnetic resonance (NMR) signals, masking any conformational heterogeneity. To probe the conformational space of T4-L, we generated a site-specific lanthanide binding site by attaching 4-mercaptomethyl dipicolinic acid via a disulfide bond to Cys44 in the triple-mutant C54T/C97A/S44C of T4-L and measured pseudocontact shifts (PCS) and magnetically induced residual dipolar couplings (RDC). The data indicate that, in solution and in the absence of substrate, the structure of T4-L is on average more open than suggested by the closed conformation of the crystal structure of wild-type T4-L. A slightly improved fit was obtained by assuming a population-weighted two-state model involving an even more open conformation and the closed state, but paramagnetic relaxation enhancements measured with Gd(3+) argue against such a conformational equilibrium. The fit could not be improved by including a third conformation picked from the hundreds of crystal structures available for T4-L mutants.Financial support by the 973 program (grant 2013CB910200), the National Science Foundation of China (grants 21073101 and 21273121), and the Australian Research Council is greatly acknowledged

    A novel zinc-binding fold in the helicase interaction domain of the Bacillus subtilis DnaI helicase loader

    Get PDF
    The helicase loader protein DnaI (the Bacillus subtilis homologue of Escherichia coli DnaC) is required to load the hexameric helicase DnaC (the B. subtilis homologue of E. coli DnaB) onto DNA at the start of replication. While the C-terminal domain of DnaI belongs to the structurally well-characterized AAA+ family of ATPases, the structure of the N-terminal domain, DnaI-N, has no homology to a known structure. Three-dimensional structure determination by nuclear magnetic resonance (NMR) spectroscopy shows that DnaI presents a novel fold containing a structurally important zinc ion. Surface plasmon resonance experiments indicate that DnaI-N is largely responsible for binding of DnaI to the hexameric helicase from B. stearothermophilus, which is a close homologue of the corresponding much less stable B. subtilis helicase

    Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N -oxide

    Get PDF
    Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin-containing monooxygenase (FMO), is found widespread in marine bacteria and is responsible for converting TMA to TMAO. However, the molecular mechanism of TMA oxygenation by Tmm has not been explained. Here, we determined the crystal structures of two reaction intermediates of a marine bacterial Tmm (RnTmm) and elucidated the catalytic mechanism of TMA oxidation by RnTmm. The catalytic process of Tmm consists of a reductive half-reaction and an oxidative half-reaction. In the reductive half-reaction, FAD is reduced and a C4a-hydroperoxyflavin intermediate forms. In the oxidative half-reaction, this intermediate attracts TMA through electronic interactions. After TMA binding, NADP+ bends and interacts with D317, shutting off the entrance to create a protected micro-environment for catalysis and exposing C4a-hydroperoxyflavin to TMA for oxidation. Sequence analysis suggests that the proposed catalytic mechanism is common for bacterial Tmms. These findings reveal the catalytic process of TMA oxidation by marine bacterial Tmm and first show that NADP+ undergoes a conformational change in the oxidative half-reaction of FMOs

    Solution structure of Domains IVa and V of the τ subunit of Escherichia coli DNA polymerase III and interaction with the α subunit

    Get PDF
    The solution structure of the C-terminal Domain V of the τ subunit of E. coli DNA polymerase III was determined by nuclear magnetic resonance (NMR) spectroscopy. The fold is unique to τ subunits. Amino acid sequence conservation is pronounced for hydrophobic residues that form the structural core of the protein, indicating that the fold is representative for τ subunits from a wide range of different bacteria. The interaction between the polymerase subunits τ and α was studied by NMR experiments where α was incubated with full-length C-terminal domain (τC16), and domains shortened at the C-terminus by 11 and 18 residues, respectively. The only interacting residues were found in the C-terminal 30-residue segment of τ, most of which is structurally disordered in free τC16. Since the N- and C-termini of the structured core of τC16 are located close to each other, this limits the possible distance between α and the pentameric δτ2γδ′ clamp–loader complex and, hence, between the two α subunits involved in leading- and lagging-strand DNA synthesis. Analysis of an N-terminally extended construct (τC22) showed that τC14 presents the only part of Domains IVa and V of τ which comprises a globular fold in the absence of other interaction partners
    corecore