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Summary

Trimethylamine (TMA) and trimethylamine N-oxide

(TMAO) are widespread in the ocean and are

important nitrogen source for bacteria. TMA monoox-

ygenase (Tmm), a bacterial flavin-containing mono-

oxygenase (FMO), is found widespread in marine

bacteria and is responsible for converting TMA to

TMAO. However, the molecular mechanism of TMA

oxygenation by Tmm has not been explained. Here,

we determined the crystal structures of two reaction

intermediates of a marine bacterial Tmm (RnTmm)

and elucidated the catalytic mechanism of TMA oxi-

dation by RnTmm. The catalytic process of Tmm con-

sists of a reductive half-reaction and an oxidative

half-reaction. In the reductive half-reaction, FAD is

reduced and a C4a-hydroperoxyflavin intermediate

forms. In the oxidative half-reaction, this intermediate

attracts TMA through electronic interactions. After

TMA binding, NADP1 bends and interacts with D317,

shutting off the entrance to create a protected

micro-environment for catalysis and exposing C4a-

hydroperoxyflavin to TMA for oxidation. Sequence

analysis suggests that the proposed catalytic

mechanism is common for bacterial Tmms. These

findings reveal the catalytic process of TMA oxida-

tion by marine bacterial Tmm and first show that

NADP1 undergoes a conformational change in the

oxidative half-reaction of FMOs.

Introduction

Methylated amines (MAs), such as trimethylamine

(TMA) and trimethylamine N-oxide (TMAO), are ubiqui-

tous in marine environments, and represent a significant

pool of carbon and nitrogen in the ocean (Gibb and

Hatton, 2004; Chen et al., 2011; Carpenter et al., 2012).

Volatile MAs are precursors of nitrous oxide (a green-

house gas) in marine atmospheres and marine aerosols

(Quinn et al., 1988; Carpenter et al., 2012). TMAO plays

important roles in many physiological processes (Seibel

and Walsh, 2002). For example, TMAO acts as a potent

protein stabilizer in deep-sea organisms (Ma et al.,

2014; Yancey et al., 2014). TMAO can also act as an

electron acceptor for anaerobic respiration (Arata et al.,

1992; Gon et al., 2001).

Flavin-containing monooxygenases (FMOs) and cyto-

chrome P450 are two effective families involved in the

metabolism of xenobiotics in eukaryotes. FMOs belong

to the class B of flavoprotein monooxygenases and can

oxygenate a wide range of substrates, such as nitrogen-

containing and sulfur-containing compounds (Van Berkel

et al., 2006). FMOs have been well studied in eukar-

yotes, including plants, fungi and mammals (Cashman,

1995; Suh et al., 1999; Suh and Robertus, 2000;

Krueger and Williams, 2005; Koch et al., 2006; Schlaich,

2007). Notably, there are five functional FMO isoforms

in human (Cashman and Zhang, 2006), and some muta-

tions in isoform 3 of human FMO (hFMO3) can cause

an inheritable disease, trimethylaminuria (TMAU), also

known as “fish-odor syndrome” (Mitchell and Smith,

2001; Zhou and Shephard, 2006).

Bacterial FMOs homologous to hFMO3 oxidize TMA

to TMAO (Choi et al., 2003; Chen et al., 2011), and

they are TMA monooxygenases (Tmms) (Chen et al.,

2011). Physiological analysis suggests that Tmms are

essential for bacteria to utilize TMA as a nitrogen source
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(Chen et al., 2011). The tmm gene is found highly abun-

dant in the metagenomes of the Global Ocean Sampling

data set, particularly in marine Roseobacter clade

(MRC) and the SAR11 clade, which are both abundant

in marine environments and are important participants

in marine C, S and N cycles (Morris et al., 2002;

Buchan et al., 2005; Rusch et al., 2007; Chen et al.,

2011; Chen, 2012). It is estimated that approximately

20% of bacteria in the surface ocean contain tmm

(Chen et al., 2011), suggesting that Tmm plays an

important role in marine N and C cycles. However, the

molecular mechanism of Tmm to oxidize TMA to TMAO

still remains unclear.

Tmm is able to catalyze oxygenations on a wide range

of substrates, such as TMA, indole and methimazole

(Alfieri et al., 2008; Orru et al., 2010; Cho et al., 2011).

The catalytic process of Tmm to oxidize indole or methi-

mazole has been studied and can be divided into a reduc-

tive half-reaction and a followed oxidative half-reaction

(Beaty and Ballou, 1981a,b; Cho et al., 2011). In the

reductive half-reaction, flavin adenine dinucleotide (FAD)

is reduced by NADPH, and the reduced FAD accepts an

oxygen molecule to generate C4a-hydroperoxyflavin.

The C4a-hydroperoxyflavin intermediate of Tmm is a

stable form in vivo (Alfieri et al., 2008). In the oxidative

half-reaction, an oxygen atom is transferred from the

C4a-hydroperoxyflavin to the substrate. It has been estab-

lished that in the reductive half-reaction, NADP1 remains

bound to Tmm, shielding the catalytic site of Tmm after

FAD reduction, and promotes the stabilization of the

C4a-hydroperoxyflavin intermediate (Alfieri et al., 2008;

Orru et al., 2010). During the oxidative half-reaction, some

studies indicated that NADP1 remains bound to Tmm

(Alfieri et al., 2008; Orru et al., 2010). However, later

structural analysis suggested that NADP1 dissociates

and the substrate binds before the oxidation (Cho et al.,

2011). Based on previous studies on indole and methima-

zole monooxygenation (Cho et al., 2011; Beaty and

Ballou, 1981a,b), it is reasonable to suppose that the

catalysis of TMA by Tmm can be divided into a reductive

half and a followed oxidative half (Fig. 1). However,

because TMA is smaller and lacks a ring structure com-

pared with indole and methimazole, the underpinning

mechanism of Tmm oxidizing TMA may be different. Till

now, the structural basis for TMA oxidation is still lacking.

In this study, we cloned a tmm gene from Roseovar-

ius nubinhibens ISM, an MRC strain isolated from sur-

face waters of the Caribbean Sea (Gonzalez et al.,

2003). The tmm gene was over-expressed in Esche-

richia coli, and the recombinant Tmm (RnTmm) was

characterized. The crystal structures of RnTmm/FAD/

NADPH complex, a mutant Y207S with marginal activity

in complex with FAD and NADPH (the Y207S/FAD/

NADPH complex), the Y207S/FAD/NADPH complex

soaked with TMA and the Y207S/FAD/NADPH/methima-

zole complex were obtained. Structural and biochemical

analyses suggest that NADP1 binds to RnTmm through-

out the catalytic process. In addition to reducing FAD

and stabilizing the C4a-hydroperoxyflavin intermediate in

the reductive half-reaction, NADP1 is also involved in

the oxidative half-reaction of RnTmm. Our results reveal

the molecular mechanism of TMA oxidation by marine

bacterial Tmms and provide novel insight into the cata-

lytic mechanism of FMOs.

Results

Expression and characterization of RnTmm

Full-length tmm was amplified from R. nubinhibens ISM

and was expressed in E. coli BL21(DE3) cells. The

gene tmm contains 1344 nucleotides and encodes a

protein of 447 residues. The optimal temperature for

RnTmm enzymatic activity was � 308C (Fig. 2A), and

the optimal pH was � 8.0 (Fig. 2B). Since FMOs exhibit

striking substrate promiscuity, we analyzed the substrate

specificity of RnTmm (Table 1). RnTmm can oxidize

TMA, methimazole, indole and dimethylamine (DMA),

and TMA is the best substrate.

Overall structure of RnTmm

To study the catalytic mechanism of RnTmm to oxygen-

ate TMA, we tried to obtain the crystal structure of

RnTmm. However, X-ray analysis showed that WT

RnTmm crystals suffered from severe twinning. We

noticed that bacterial FMO from Methylophaga sp. strain

SK1 (mFMO) also encountered the twinning problem

(Alfieri et al., 2008), and that mutation of two solvent-

exposed charged residues (E158A/E159A) gave mFMO

Fig. 1. The reaction scheme for TMA oxidation by Tmm. The catalytic process of Tmm can be divided into a reductive half-reaction and a
followed oxidative half-reaction. In the oxidative half-reaction, NADP1 is colored in gray because its function is controversial.

2 C.-Y. Li et al. �

VC 2016 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd, Molecular Microbiology, 00, 00–00



crystals free from twinning (Alfieri et al., 2008).

Sequence alignment indicated that RnTmm possesses

E153/D154 at the equivalent position to E158/E159 of

mFMO. We, therefore, generated an E153A/D154A dou-

ble mutant of RnTmm. This mutation enabled RnTmm

crystals free from twinning, and we obtained the 1.5 Å

crystal structure of this mutant in complex with FAD and

NADPH (Table 2). The biochemical properties of this

mutant exhibited no substantial difference from those of

WT RnTmm (Table 1), indicating that the E153A/D154A

mutation had little effect on the catalytic properties of

RnTmm. Thus, the E153A/D154A mutant was used to

create additional mutants. For clarity, the crystal struc-

ture of E153A/D154A in complex with FAD and NADPH

was simply termed as the crystal structure of WT

RnTmm hereafter.

The overall structure of WT RnTmm is similar to those

of other reported bacterial FMOs (Eswaramoorthy et al.,

2006; Alfieri et al., 2008; Orru et al., 2010; Cho et al.,

2011). WT RnTmm contains a smaller NADP1 binding

domain and a larger FAD binding domain, which are con-

nected by two hinge regions (H164 to N169 and C271 to

H276) (Fig. 3A). FAD molecule and NADP1 molecule can

be clearly observed in the structure (Fig. 3A). To obtain

the crystal structure of RnTmm in complex with TMA, we

constructed a mutant Y207S, which had significantly

lower activity compared with that of WT RnTmm (Fig. 3B).

Although our attempt to obtain the Y207S/FAD/NADPH in

complex with TMA by co-crystallization was not success-

ful, the crystal structures of Y207S/FAD/NADPH complex

without ligand and of Y207S/FAD/NADPH complex

soaked with TMA were determined to 1.75 Å and 1.5 Å

respectively (Table 2). For briefness, the crystal structure

of Y207S/FAD/NADPH complex without ligand was

termed the crystal structure of Y207S and that of Y207S/

FAD/NADPH complex soaked with TMA termed the crys-

tal structure of Y207S soaking hereafter. The overall

structures of Y207S and Y207S soaking are quite similar

to that of WT RnTmm, with the root mean square devia-

tion (RMSD) between WT RnTmm and Y207S of 0.42 Å,

and the RMSD between WT RnTmm and Y207S soaking

of 0.44 Å.

Entrance for NADPH and substrates

The electron density map of RnTmm shows the location

of the FAD molecule and the NADP1 molecule. The

FAD molecule is bound deeply in the protein (Fig. 4A).

Residues N73 and T321 form hydrogen bonds with the

isoalloxazine ring, the backbone carbonyl of V126 forms

interaction with the adenine moiety, residues E38 and

Q40 form hydrogen bonds with the ribose moiety, and

residues S13, L46, W47, H63 and Q318 interact with

the other parts of FAD (Fig. 4B). For the NADP1 mole-

cule, only the nicotinamide ring is located inside

RnTmm, forming pi–pi stacking interaction with the iso-

alloxazine ring of FAD, and the other parts nest the sur-

face of RnTmm (Fig. 4A). Residues W71, D211, and

R413 form hydrogen bonds with the nicotinamide ring,

residues Y173 and R229 form interactions with the ade-

nine moiety, and residues N73, A205 and S208 interact

with the other parts of NADP1 (Fig. 4C).

Analysis of WT RnTmm structure indicated that

the entrance is still partially solvent accessible after the

NADP1 molecule binds to RnTmm, and that the

entrance is obviously divided into two zones, the basic

Fig. 2. Characterization of
recombinant RnTmm.
A. Effect of temperature on
the enzymatic activity of
RnTmm. B. Effect of pH on
the enzymatic activity of
RnTmm.

Table 1. Kinetic parameters for recombinant RnTmm with

substrates.

Substrate Km (lM) kcat (s21)

TMA 110.5 6 14.5 0.53 6 0.04
TMA (E153A/D154A) 85.1 6 11.3 0.45 6 0.03
methimazole 123.3 6 44.6 0.22 6 0.03
indole 244.0 6 36.0 0.15 6 0.01
DMA 164.9 6 36.5 0.17 6 0.02

NADP1 bending is important for TMA oxidation 3
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zone and the acidic zone (Fig. 4A). The basic zone is

formed mainly by the basic side-chain of R229 and the

nitrogen atoms from the main-chain of residues G204,

A205 and G273; the acidic zone contains several acidic

residues, such as D317, E360, E361 and D364. The

NADP1 molecule nests in the basic zone of the

entrance by forming hydrogen bonds with RnTmm resi-

dues. Among Tmm’s substrates, most contain a basic

amine group, such as TMA, methimazole, N,N dimethy-

laniline and indole. Therefore, the acidic zone can

attract these basic substrates, bringing an appropriate

substrate into the catalytic site.

Table 2. Crystallographic data collection and refinement.

Parameters WT RnTmm Y207S TMA soaking Y207S-Methimazole

Diffraction data
Space group P21 P21 P21 P21

Unit cell
a, b, c (Å) 73.5, 85.4, 79.5 72.8, 60.9, 104.7 73.0, 61.4, 104.7 60.8, 207.6, 72.5
a, b, g (˚) 90.0, 113.0, 90.0 90.0, 93.7, 90. 0 90.0, 94.0, 90.0 90.0, 90.3, 90.0
Resolution range
(Å)

50.0–1.5
(1.55–1.50)a

50.0–1.75
(1.81–1.75)

50.0–1.5
(1.53–1.50)

50.0–2.2
(2.28–2.20)

Redundancy 6.2 (5.9) 6.8 (6.3) 3.6 (3.7) 3.1 (2.9)
Completeness (%) 98.8 (98.3) 98.7 (98.2) 88.2 (98.4) 93.2 (92.1)
Rmerge

b 0.1 (0.3) 0.1 (0.5) 0.1 (0.4) 0.2 (0.4)
I/rI 31.1 (7.8) 14.2 (2.8) 36.8 (5.3) 10.5 (2.7)
Refinement statistics
R-factor 0.15 0.18 0.16 0.20
Free R-factor 0.17 0.22 0.21 0.27
RMSD from ideal geometry
Bond lengths (Å) 0.006 0.015 0.005 0.008
Bond angles (˚) 1.17 1.10 1.08 1.163
Ramachandran plot (%)
Favored 94.9 95.4 94.4 92.7
Allowed 5.1 4.6 5.3 7.1
Outliers 0.3 0.2
Overall B-factors (Å2) 14.1 23.6 24.3 33.07

a. Numbers in parentheses refer to data in the highest resolution shell.
b. Rmerge 5

P
hkl

P
i|I(hkl)i 2<I(hkl)>|/

P
hkl

P
i< I(hkl)i>.

Fig. 3. Overall structure of WT RnTmm.
A. The overall structure of WT RnTmm. The RnTmm molecule contains a smaller NADP1 binding domain (colored in cyan) and a larger FAD
binding domain (colored in bluewhite). The NADP1 molecule (colored in purple) and the FAD molecule (colored in yellow) can be clearly
identified in the structure. Residue Y207 is colored in green.
B. The effect of mutation Y207S on the enzymatic activity of RnTmm. The activity of WT RnTmm was defined as 100%.
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Conformational change of NADP1 molecule in the
oxidative half-reaction

A quaternary complex containing Y207S, FAD, NADP1

and TMA was expected in the crystal structure of Y207S

soaking; however, not explicit electron density of TMA

was identified during structural refinement. By superim-

posing the catalytic site structures of WT RnTmm, Y207S

and Y207S that was soaked with TMA, we found that the

FAD molecules are perfectly superimposed among these

three structures (Fig. 5A). Interestingly, the NADP1 mole-

cules are perfectly superimposed in WT RnTmm and

Y207S structures, but the Y207S that had been soaked

with TMA exhibits a conformational change (Fig. 5B). In

addition, the electron density map for the nicotinamide

Fig. 4. The binding of the FAD and NADP1 molecules of RnTmm.
The FAD molecule is colored in yellow, the NADP1 molecule is
colored in blue, and the RnTmm residues are colored in cyan.
A. Electrostatic surface of the crystal structure of RnTmm. The
FAD molecule is buried in RnTmm, while only the nicotinamide ring
of NADP1 is inserted into RnTmm. The entrance for substrates can
be divided into two zones, the basic zone and the acidic zone.
B. Interactions between RnTmm residues and FAD. The possible
hydrogen bonds are represented by dashed lines.
C. Interactions between RnTmm residues and NADP1. The
possible hydrogen bonds are represented by dashed lines.

Fig. 5. Analysis of the conformational change of NADP1.
A. The conformation of FAD in the crystal structures of WT
RnTmm (colored in green), Y207S (colored in cyan) and Y207S
soaking (colored in purple).
B. The conformation of NADP1 in the crystal structures of WT
RnTmm, Y207S and Y207S soaking. The colors are same to (A).
The conformational change of NADP1 is indicated by black arrow.
C. The 2Fo–Fc densities for NADP1 and D317 from the structure of
Y207S soaking are contoured in blue at 1.5r.
D. The conformation of NADP1 in the crystal structures of Y207S
(colored in green), Y207S soaking (colored in purple) and Y207S-
methimazole (colored in cyan).

NADP1 bending is important for TMA oxidation 5
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ring of NADP1 in the structure of Y207S that had been

soaked with TMA is rather poor under the 1.5 Å resolution,

whereas the electron density map for the other parts of

NADP1 is clear (Fig. 5C), indicating that the nicotinamide

ring of NADP1 becomes mobile during soaking. Notably,

the electron density map strongly indicates an interaction

between NADP1 and D317 in Y207S soaking (Fig. 5C).

Compared with those in WT RnTmm and Y207S, the

ribose ring connecting to the nicotinamide ring of NADP1

in Y207S soaking moves approximate 2.7 Å toward D317,

and forms a hydrogen bond with the side-chain of D317

(Fig. 5B). Because D317 is one of the residues constitut-

ing the acidic zone of the substrate entrance, the forma-

tion of the hydrogen bond between NADP1 and D317 can

“shut off” the substrate entrance of RnTmm and make the

catalytic site solvent inaccessible, thereby forming a rela-

tively enclosed micro-environment for the catalytic reac-

tion. In addition, a mutation of D317 to alanine decreased

the activity of RnTmm significantly (Fig. 6), further indicat-

ing the importance of the interaction between NADP1 and

D317 in the catalytic cycle of RnTmm.

Among substrates RnTmm can catalyze, TMA and

DMA are relatively small molecules, whereas methima-

zole and indole both possess a ring structure. To find

out whether substrates possessing a ring structure

also induce a conformational change of NADP1, we

solved the crystal structure of Y207S/FAD/NADPH/

methimazole complex (Y207S-methimazole). The over-

all structure of Y207S-methimazole is similar to that of

WT RnTmm, with the RMSD of 0.22 Å between these

two structures. In the crystal structure of Y207S-

methimazole, electron density map indicates that the

NADP1 molecule also undergoes a conformational

change during methimazole soaking, and that the

ribose ring connecting to the nicotinamide ring of

NADP1 also forms a hydrogen bond with D317 (Fig.

5D). These results indicate that RnTmm adopts similar

strategies to catalyze different substrates.

In addition to “shut off” the substrate entrance, the

NADP1 bending in Y207S soaking also breaks the inter-

actions between the nicotinamide ring of NADP1 and

the isoalloxazine ring of FAD (Fig. 7). In the structures

Fig. 6. Analysis of the
important role of the residue
D317.
A. Enzymatic activities of the
mutant D317A and WT
RnTmm. The activity of WT
RnTmm was defined as
100%.
B. Circular-dichroism spectra
of the mutant D317A and WT
RnTmm.

Fig. 7. Interactions between NADP1 and FAD. The FAD molecule is
colored in yellow, the NADP1 molecule in green, and residue D317 in
cyan. The possible hydrogen bonds are represented by dashed lines.
A. The conformation of NADP1 and FAD in the structure of WT
RnTmm.
B. The conformation of NADP1 and FAD in the structure of Y207S
soaking.
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of WT RnTmm and Y207S, the nicotinamide ring of

NADP1 forms stacking interactions with the isoalloxa-

zine ring of FAD, and the nitrogen atom of the nicotina-

mide ring of NADP1 forms hydrogen bonds with the

nitrogen atom or the oxygen atom of the isoalloxazine

ring of FAD (Fig. 7A). The interactions between the two

rings are essential for stabilization of the C4a-

hydroperoxyflavin intermediate by NADP1 (Alfieri et al.,

2008; Orru et al., 2010). In the structure of Y207S soak-

ing, the electron density of the nicotinamide ring is poor

(Fig. 5C), suggesting that there may be no direct inter-

actions between NADP1 and FAD (Fig. 7B). However,

the NADP1 does seem to close off the entrance to pro-

tect the C4a-hydroperoxyflavin.

The catalytic cycle of RnTmm with TMA as a substrate

Based on previous studies on the reductive half-reaction

of Tmm catalysis (Alfieri et al., 2008; Orru et al., 2010)

and our results on the oxidative half-reaction, we pro-

pose a relatively complete catalytic cycle of RnTmm

with TMA as a substrate (Fig. 8). In the reductive half-

reaction, NADPH reduces FAD and the C4a-

hydroperoxyflavin intermediate forms. It is believed that

Tmm spends most of the time in this intermediate state

in vivo (Alfieri et al., 2008). In the intermediate state, the

NADP1 molecule nests the basic zone of the entrance

for substrates, and the catalytic pocket of RnTmm is still

partially solvent accessible. The nicotinamide ring of

NADP1 inserted in RnTmm protects the C4a-

hydroperoxyflavin intermediate from solvent attack

(Beaty and Ballou, 1981b). The acidic zone of RnTmm

attracts a TMA molecule and directs it into the catalytic

pocket. Once TMA enters the catalytic pocket, it occu-

pies the catalytic site and makes NADP1 bend to start

the oxidative half-reaction. NADP1 bending would result

in two consequences: Firstly, the ribose ring connecting

to the nicotinamide ring of NADP1 forms a hydrogen

bond with D317, shutting off the substrate entrance and

promoting a protected micro-environment for the cata-

lytic reaction; Secondly, the nicotinamide ring of NADP1

that protects the C4a-hydroperoxyflavin shifts, exposing

the C4a-hydroperoxyflavin to the substrate for catalysis

(Fig. 8). After the oxygenation, the C4a-position of the

FAD bears an AOH group, which loses water, NADP1

and TMAO to regenerate the oxidized FAD. In the next

catalytic cycle, an NADPH molecule re-binds to RnTmm,

reduces the FAD, and shields the C4a-hydroperoxyflavin

intermediate, enabling RnTmm to get ready for the oxy-

genation of the next substrate.

Universality of the catalytic cycle of RnTmm to oxidize

TMA into TMAO in bacteria

The tmm gene is widespread in many marine bacteria,

especially in MRC and the SAR11 clade. Most bacterial

strains containing tmm homologs can grow on TMA as

a sole nitrogen source (Chen et al., 2011), implying the

importance of these bacterial strains in metabolizing

TMA in the ocean. In addition, many soil bacteria also

contain tmm homologs, for example, Rhizobium and

Mesorhizobium. To analyze the universality of the cata-

lytic mechanism of RnTmm to oxidize TMA into TMAO

in bacteria, we performed sequence alignment of

Fig. 8. The catalytic cycle of RnTmm to oxidize TMA into TMAO. In the reductive half-reaction, the C4a-hydroperoxyflavin intermediate is
formed. The NADP1 molecule remains in the active site, shielding the C4a-hydroperoxyflavin intermediate from solvent attack. Once TMA
comes into the catalytic pocket, the NADP1 undergoes a conformational change to form a hydrogen bond with D317, shutting off the entrance
and exposing the C4a-hydroperoxyflavin to oxidize TMA. After the reaction, NADP1 and the produced TMAO are released, and the FAD is
regenerated. FAD intermediate indicates the C4a-hydroperoxyflavin.
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Fig. 9. Sequence alignment of bacterial Tmm proteins. Black dots indicate residues involved in NADPH binding, black triangles indicate
residues involved in FAD binding, and residue D317 is marked by a black star. Sequences 1–8 are Tmm’s from marine bacteria, including 1–4
from MRC and 5–6 from the SAR11 clade. Sequences 9–10 are Tmm’s from soil bacteria. 1, Roseovarius nubinhibens ISM, EAP78254.1; 2,
Ruegeria pomeroyi DSS3, WP_011047288.1; 3, Roseobacter denitrificans, WP_044032905.1; 4, Roseovarius sp. 217, WP_009818593.1; 5,
Pelagibacter ubique HTCC1002, WP_006997992.1; 6, Pelagibacter ubique HTCC7211, WP_008544347.1; 7, Marinobacterium stanieri,
WP_029511274.1; 8, Marinobacterium litorale, WP_027855190.1; 9, Rhizobium leguminosarum, WP_025397603.1; and 10, Mesorhizobium
sp. 1M-11, WP_054310147.1. The alignment was done with ClustalW (Chenna et al., 2003) and ESPript (Robert and Gouet, 2014).
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bacterial Tmms. The result showed that residue D317

and most residues involved in binding FAD and NADP1

in RnTmm are highly conserved in Tmms from both

marine bacteria and soil bacteria (Fig. 9). This indicates

that the proposed catalytic cycle of RnTmm to oxidize

TMA into TMAO is likely adopted by most, if not all, bac-

terial Tmms.

Discussion

Many studies on the catalytic mechanisms of both

eukaryotic and bacterial FMOs have been reported and

it is regarded as a general characteristic of FMOs that

the coenzyme NADP1 remains bound to the enzyme

throughout catalysis (Van Berkel et al., 2006; Alfieri

et al., 2008; Orru et al., 2010; Crozier-Reabe and

Moran, 2012). However, a structural study by Cho et al.

suggested that for the catalysis of indole by Tmm from

Methylophaga aminosulfidovorans MPT, indole competes

with NADP1 for binding to the catalytic site and NADP1

is released before the oxidative half-reaction (Cho et al.,

2011). After the departure of NADP1, the C4a-

hydroperoxyflavin intermediate might be transitorily

stabilized by residues of the enzyme (Cho et al., 2011).

Here, our data showed that TMA only competes the nic-

otinamide ring of NADP1, and the NADP1 molecule

remains bound to Tmm until the catalytic reaction

finishes, which is in accordance with the general

characteristics of FMOs (Van Berkel et al., 2006;

Crozier-Reabe and Moran, 2012). This is the first struc-

tural evidence that NADP1 binds to Tmm throughout the

catalysis of TMA.

In addition to reducing FAD, it has been reported

that NADP(H) also exhibited a moonlighting activity to

protect the C4a-hydroperoxyflavin intermediate during

the reductive half-reaction of the catalysis (Alfieri

et al., 2008; Orru et al., 2010). Although studies indi-

cated that NADP1 binds to FMOs throughout the catal-

ysis (Van Berkel et al., 2006; Alfieri et al., 2008; Orru

et al., 2010; Crozier-Reabe and Moran, 2012), the role

of NADP1 in the oxidative half-reaction is not explicit

yet. Our results indicate that the NADP1 molecule

undergoes a conformational change in the oxidative

half-reaction, which exposes the catalytic C4a-

hydroperoxyflavin to TMA, and promotes a protected

micro-environment for the catalytic reaction of Tmm by

forming a hydrogen bond with a conserved aspartic

acid residue. Therefore, in addition to functioning in

the reductive half-reaction, NADPH/NADP1 also plays

an important role in the oxidative half-reaction of Tmm

for TMA oxidation. NADP1 bending was also identified

in Baeyer-Villiger monooxygenases (BVMOs) (Yachnin

et al., 2012), another subclass of the class B

flavoprotein monooxygenases (Riebel et al., 2014). For

BVMOs, intramolecular hydrogen bonds are important

in stabilizing the rotated conformation of NADP1

(Yachnin et al., 2012). Here for FMOs, we highlight the

importance of interactions between NADP1 and Tmm.

In both cases, NADP1 bending exposes the catalytic

site and promotes the oxidative reaction (Yachnin

et al., 2012). Therefore, our study on FMOs should

enrich our understanding of the catalytic cycle of flavo-

protein monooxygenases.

Structural analysis demonstrated that there is no

direct interaction between the substrate and the resi-

dues of Tmm (Eswaramoorthy et al., 2006; Cho et al.,

2011). Substrates containing a ring structure, such as

indole and methimazole, can form stacking interactions

with the isoalloxazine ring of FAD (Eswaramoorthy

et al., 2006; Cho et al., 2011). Because TMA does not

possess a ring structure, there may be no effective inter-

action to stabilize its conformation when TMA enters the

catalytic pocket, and the positive charge on TMA prob-

ably repels the positive charge on the pyridinium ring of

NADP1 to drive the movement of the nicotinamide dur-

ing the reaction. In the catalytic cycle of Tmm, when

TMA enters the catalytic site, it should be directed to

the C4a-hydroperoxyflavin, triggering the oxidative half-

reaction. Because TMA molecule cannot form stacking

interactions with FAD, we suggest that the catalytic reac-

tion of Tmm proceeds quickly, and a prolonged steady-

conformation of TMA is not necessary. This may be the

reason why we have observed the conformational

change of NADP1, but cannot identify the location of

TMA in the structure of Y207S soaked with TMA. The

aromatic ring of Y207 residue forms a pi-pi stacking with

the isoalloxazine ring of FAD in the Tmm without

NADPH (Orru et al., 2010; Cho et al., 2011). When

NADPH binds to the catalytic site, it competes for the

isoalloxazine ring and frees Y207 (Orru et al., 2010;

Cho et al., 2011). Thus, the isoalloxazine ring

moves between the aromatic ring of Y207 and the nico-

tinamide ring of NADP1, and Y207 plays a role in

releasing NADP1 after each catalytic cycle during TMA

oxidation.

In conclusion, this study illustrated the catalytic cycle

of TMA oxidation by marine RnTmm and showed the

first structural evidence of NADP1 binding to a Tmm

throughout the catalytic reaction and its involvement in

the oxidative half-reaction by a conformational bending.

The proposed mechanism of TMA oxidation by RnTmm

may have universal significance among bacteria contain-

ing Tmm. Our results provide novel insights into the cat-

alytic mechanism of FMOs and promote a better

understanding of TMA-involved marine carbon and nitro-

gen cycling.
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Experimental procedures

Bacterial strains and growth conditions

R. nubinhibens ISM was purchased from the Leibniz Insti-

tute DSMZ-German Collection of Microorganisms and Cell

Cultures and was cultured in the 974 medium at 308C for 2

days according to the provided protocol (http://www.dsmz.

de/). E. coli strains DH5a and BL21 (DE3) were grown in

Lysogeny Broth (LB) medium at 378C.

Gene cloning, point mutation and protein expression

and purification

The tmm gene was amplified from the genomic DNA of R.

nubinhibens ISM using PCR and was subcloned into the

pET22b (Novagen) vector with a C-terminal His tag. All of

the point mutations (E153A/D154A, Y207S and D317A) in

RnTmm were introduced using PCR-based methods and

were verified by DNA sequencing. Y207S and D317A were

constructed base on mutant E153A/D154A. The RnTmm

protein and all of its mutants were expressed in E. coli

strain BL21 (DE3). The cells were cultured at 378C in LB

medium to an OD600 of 0.8–1.0 and then induced at 208C

for 16 h with 0.5 mM isopropyl b-D-1-thiogalactopyranoside

(IPTG). The proteins were purified first with Ni21-NTA resin

(Qiagen) and then fractionated by gel filtration on a

Superdex-200 column (GE Healthcare).

Enzyme assays

The enzymatic properties of RnTmm were measured by fol-

lowing the decrease of absorbance at 340 nm

(e340 5 6.22 mM21 cm21 for NADPH) (Alfieri et al., 2008).

The reaction mixture contains 1 lM RnTmm, 0.25 mM

NADPH and 1 mM TMA. For the measurement of Km of

RnTmm, substrate (TMA, methimazole, indole or DMA) of

different concentrations was added into the reaction system

containing 1 lM RnTmm and 0.25 mM NADPH. The opti-

mal pH and the optimal temperature of RnTmm were deter-

mined using TMA as the substrate. For measurement of

the optimal temperature of RnTmm, a buffer containing

10 mM Tris-HCl (pH 8.0) and 100 mM NaCl was pre-

incubated at different temperatures for 30 min, and then 1

lM RnTmm, 0.25 mM NADPH and 1 mM TMA were added

into the buffer and the mixture was incubated at different

temperatures for 3 min before detection by V550 UV/VIS

spectrophotometer (Jasco). The optimal pH of RnTmm was

measured using Britton-Robinson buffer over a pH range

from 7.0 to 9.5. Britton-Robinson buffer is a mixture of

0.04 M H3BO3, 0.04 M H3PO4 and 0.04 M CH3COOH

(Barek et al., 1999).
The enzymatic activities of RnTmm mutants were deter-

mined by detecting the fluorescence of indoxyl on a FP-

6500 spectrofluorometer (Jasco) (Woo et al., 2000). The

reaction mixture contained 2 lM RnTmm or a mutant,

0.15 mM NADPH and 0.15 mM indole. The mixture was

incubated for 10 min before detection. Fluorescence spec-

tra were collected from 450 to 490 nm at a scan speed of

1000 nm min21 with the excitation wavelength of 365 nm
(Woo et al., 2000).

Crystallization and data collection

The purified RnTmm protein was concentrated to approxi-
mately 10 mg ml21 in 10 mM Tris-HCl (pH 8.0) and

100 mM NaCl. To obtain crystals of WT RnTmm, NADPH
was added into the protein solution to a final concentration
of 5 mM before crystallization. Initial crystallization trials for

WT RnTmm were performed at 208C using the sitting drop
vapor diffusion method. Diffraction-quality crystals of WT
RnTmm were obtained in hanging drops containing 0.2 M

magnesium acetate tetrahydrate, 0.1 M sodium cacodylate
trihydrate (pH 6.5) and 20% (w/v) polyethylene glycol
(PEG) 8000 at 208C after 2-weeks incubation.

Diffraction-quality crystals of Y207S were obtained in
hanging drops containing 0.2 M sodium acetate, 0.1 M Bis-
Tris propane (pH 6.5) and 20% (w/v) PEG 3350 at 208C.

The crystals of Y207S soaking were obtained using crystals
of Y207S soaked with 15 mM TMA for 15 min. The crystals
of Y207S-methimazole were obtained using crystals of

Y207S soaked with 15 mM methimazole for 15 min. X-ray
diffraction data were collected on the BL19U1 beamline at
the Shanghai Synchrotron Radiation Facility. The initial dif-

fraction data sets were processed by the HKL3000 program
(Minor et al., 2006).

Structure determination and refinement

The crystals of WT RnTmm, Y207S, Y207S soaking and
Y207S-methimazole all belong to the P21 space group. The

crystal structure of WT RnTmm was determined by molecu-
lar replacement using the CCP4 program Phaser (Potterton

et al., 2003) with the crystal structure of bacterial FMO
(PDB code: 2XVE) as the search model. The structures of
Y207S, Y207S soaking and Y207S-methimazole were

determined using WT RnTmm as the search model. The
refinements of these structures were performed using Coot
(Emsley and Cowtan, 2004) and Phenix (Adams et al.,

2002). All of the structure figures were made using the pro-
gram PyMOL (http://www.pymol.org/).

Circular-dichroism (CD) spectroscopic assays

WT RnTmm and its mutant were subjected to CD spectro-
scopic assays at 258C on a J-810 spectropolarimeter

(Jasco). CD spectra of the samples at a final concentration
of approximately 10 lM were collected from 250 to 200 nm
at a scan speed of 500 nm min21 with a band width of

2 nm. All of the samples were in the buffer containing
10 mM Tris-HCl (pH 8.0) and 100 mM NaCl.

Accession numbers

The structures of WT RnTmm, Y207S, Y207S soaking and
Y207S- methimazole have been deposited in the Protein

Data Bank (PDB) under the accession codes 5IPY, 5IQ1,
5IQ4 and 5GSN respectively.
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