
COMMUNICATION          

 

 

 

 

3D structure determination of an unstable transient enzyme 
intermediate by paramagnetic NMR spectroscopy  

Jia-Liang Chena, Xiao Wanga, Feng Yanga, Chan Caoa, Gottfried Ottingb, and Xun-Cheng Su*a 

 

Abstract: Enzyme catalysis of chemical reactions relies on 

conformational plasticity but structural information on transient 

intermediates is difficult to obtain. Here we show that the three-

dimensional (3D) structure of an unstable, low abundance enzymatic 

intermediate can be determined by nuclear magnetic resonance 

(NMR) spectroscopy. The approach is demonstrated for 

Staphylococcus aureus sortase A (SrtA), which is an established drug 

target and biotechnological reagent. SrtA is a transpeptidase that 

converts an amide bond of substrate peptide to a thioester. By 

measuring pseudocontact shifts (PCS) generated by a site-specific 

cysteine-reactive paramagnetic tag that does not react with the active 

site residue Cys184, a sufficient number of restraints could be 

collected to determine the 3D structure of the unstable thioacyl 

intermediate of SrtA that is present only as a minor species under non-

equilibrium conditions. The 3D structure reveals structural changes 

that protect the thioacyl intermediate against hydrolysis and indicate 

a positive allosteric effect between the thioester bond and a calcium 

binding site. 

Delineating conformational changes of protein enzymes at atomic 

resolution is required for a detailed understanding of their 

functions.1,2 Different methods for structural characterization of 

enzymes during chemical reaction have been developed 

recently.1,2,3. Structure determinations of unstable enzyme 

intermediates in solution, however, are still a challenge in view of 

the short lifetime and low abundance of intermediates, which 

makes it difficult to collect sufficient structural restraints in the time 

available. Recent advances in NMR spectroscopy have made it 

possible to obtain protein structures from NMR data other than 

nuclear Overhauser effects, such as chemical shifts, residual 

dipolar couplings (RDC), paramagnetic relaxation enhancement 

(PRE), and pseudocontact shifts (PCS).4-12 PCSs stand out for 

providing localization restraints for nuclear spins relative to the 

paramagnetic center that can be measured in minutes in sensitive 

heteronuclear single quantum coherence (HSQC) spectra. Here 

we show how PCSs allowed the 3D structure determination of the 

unstable transient thioacyl intermediate formed by 

Staphylococcus aureus Sortase A (SrtA) and a peptide substrate. 

SrtA is an important protein enzyme in Gram-positive bacteria. It 

converts a backbone amide of substrate peptide (the peptide 

bond between threonine and glycine in polypeptides containing 

the LPXTG motif, where X can be any amino acid) into a thioester 

with the active-site cysteine residue (Cys184).13-16 SrtA is an 

established drug target15 and is increasingly being used as a 

biotechnological tool for protein ligations.17,18 3D structures of SrtA 

have been determined by X-ray crystallography and NMR 

spectroscopy.19,20 The structure of disulfide bond linked thioacyl 

analogue SrtA-LPAT* has been solved by NMR and showed 

significantly different structural features compared with free SrtA 

or SrtA in a non-covalent complex with peptide substrate.21 While 

the occurrence of a SrtA thioacyl complex can be detected in a 

mass spectrum,22,23 but the 3D structure of this unstable 

intermediate has not been determined. Thioacyl complexes are 

intermediates in many enzyme reactions,24 making techniques for 

their structural elucidation highly desirable.  

Figure 1. NMR detection of the SrtA thioacyl intermediate during hydrolysis of 

substrate peptide. All 15N-HSQC spectra were recorded of 0.1 mM solutions of 

uniformly 15N-labeled SrtA in 20 mM MES buffer, pH 6.4, at 298 K in the 

presence of 1.0 mM CaCl2. a) Superimposition of 15N-HSQC spectra before 

(red) and after (black) mixing with 1.0 mM peptide QALPETG-NH2. 

Corresponding cross-peaks of the thioacyl intermediate (minor species) and 

free SrtA (major species) from the same residues are connected by lines. b) 

Chemical structure of the thioacyl intermediate formed between SrtA and 

QALPETG-NH2. 

 

In the present work, we identified conditions under which SrtA 

(without the N-terminal 58 amino acids that serve as a membrane 

anchor in full-length SrtA)19 transiently displays resolved NMR 

resonances for the thioacyl intermediate. We next labeled SrtA 

site-specifically with a lanthanide binding tag and measured PCSs 

of the short-lived thioacyl intermediate formed between Cys184 of 

SrtA and the threonine residue of the substrate peptide QALPETG. 
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Using the PCSs as structural restraints, we determined the 3D 

structure of the thioacyl intermediate state of SrtA. 

 

 

Figure 2. Population of thioacyl intermediate. a) Cross-peak volumes of selected 

residues of the thioacyl intermediate relative to the sum of cross-peak volumes 

of minor and major species, which provides an estimate of the population of the 

thioacyl species, as a function of incubation time. Different cross-peak 

amplitudes between different residues result from different line widths in the 

minor and major species. Apparent variations in decay rates arise from limited 

sensitivity of weak cross-peaks. b) Abundance of the thioacyl intermediate as a 

function of pH determined from 15N-HSQC cross-peak volumes as in a) (see 

supporting material). c). MALDI-TOF mass spectra recorded for the mixture of 

0.1 mM SrtA (unlabeled) and 1.0 mM Ca2+ prepared without (black) and with 

(red) 1.0 mM QALPETG-NH2 in 20 mM MES buffer at pH 6.4. The calculated 

molecular mass difference of 640 mass units between SrtA and thioacyl SrtA-

QALPET is identical to the difference of masses observed (16946.6 and 

17586.6). 

 

Figure 3. Site-specific labeling of SrtA D82C with a paramagnetic lanthanide tag. 

a) Chemical structures of the tags T1 and T2 used in the present study. b) 

Ribbon representation of the SrtA structure (PDB code: 1T2P20), highlighting the 

active site and calcium binding site by showing the side chains of catalytically 

important residues (His120, Cys184, and Arg197) and of residues involved in 

calcium binding (Glu105, Glu108, Asp112, and Glu171), respectively. The 

strands 7 and 8 are shown in orange, the preceding 6/7 loop in magenta, 

and the 7/8 loop in black. The arrow points at the side chain of Asp82 that 

was mutated to cysteine for paramagnetic tagging. 

 

NMR signals of the intermediate were identified by 

monitoring the reaction of SrtA with substrate peptide (QALPETG-

NH2, where NH2 serves as a protection group at the C-terminal 

glycine) by 15N-HSQC spectra. Many new weak cross-peaks 

appeared (Figure 1a), which decreased with a half-life of about 

five hours (Figure 2a) and were most highly populated at pH 6.4 

(Figure 2b). Mass spectrometry indicated that the new species 

was the thioacyl intermediate (Figure 2c).22,23 The intermediate 

could not be detected in the absence of calcium or in the presence 

of 1.0 mM tri-glycine peptide, which is known to act as a second 

substrate to resolve the thioester by forming a peptide bond with 

the bound first substrate (Figures S1 and S2).  

The lifetime and concentration of the thioacyl complex was too 

short for NMR resonance assignments by standard 3D triple-

resonance experiments. Therefore, we assigned the resonances 

by comparison with a stable disulfide-bonded analogue produced 

by ligating the peptide QALPECG-NH2 to Cys184 of SrtA 

(Scheme S1).25 The 15N-HSQC spectrum of the disulfide bond 

linked SrtA-QALPECG-NH2 adduct showed cross-peaks at very 

similar chemical shifts as the SrtA-QALPET thioacyl complex in 

the presence of Ca2+ (Figure S3) and the backbone assignment 

of the SrtA-QALPECG-NH2 adduct was readily obtained by a 3D 
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NOESY-15N-HSQC spectrum. Residues showing large chemical 

shift differences between the SrtA-QALPECG-NH2 adduct and the 

thioacyl intermediate mainly involved amides close to Cys184, 

reflecting the chemical difference between the disulfide and 

thioester bond linkages. Similarly, the calcium binding motif 

(Glu105, Glu108, Asp112, Asn114, and Glu171)26 displayed 

almost identical chemical shifts in the 15N-HSQC spectra of the 

SrtA-QALPECG-NH2 adduct and thioacyl intermediate. Judging 

by the chemical shift differences, the structural difference to free 

SrtA is much greater (Figure S3). 

Figure 4. PCSs measured for SrtA D82C labeled with the lanthanide binding 

tags T1 or T2. Superimpositions of 15N-HSQC spectra measured of 0.15 mM 

solutions of tagged SrtA D82C in complex with one equivalent of Y3+ (black), 

Tm3+ (red), or Tb3+ (blue). Selected cross-peaks are labeled with their 

resonance assignment, using black labels for the free protein, and blue labels 

and stars for the corresponding cross-peaks of the thioacyl intermediate. a) 

Spectra recorded of 0.15 mM SrtA D82C with T1 tag in the presence of 1.0 mM 

Ca2+ and 1.0 mM QALPETG-NH2. b) Zoom into selected regions of the 15N-

HSQC spectra recorded of the thioacyl intermediate, highlighting differences in 

the PCSs for the thioacyl intermediate and the free protein. Left panel: 15N-

HSQC spectra of SrtA D82C with T1 tag shown in b). Right panel: same as b), 

except that the spectra were recorded for SrtA D82C with T2 tag. 

 

Following assignment of the 15N-HSQC spectrum, we sought 

to collect structural restraints of the thioacyl intermediate. Most of 

the 15N-HSQC cross-peaks of the thioacyl intermediate were 

sufficiently well resolved to enable accurate PCS measurements 

of protein samples that were site-specifically labeled with a 

paramagnetic ion. As SrtA contains a Ca2+ binding motif and Ca2+ 

is important for enhancing the enzymatic activity,19 any 

paramagnetic lanthanide tag needs to have a higher binding 

affinity for lanthanide than calcium ions. Moreover, the thiol group 

of Cys184 could potentially react with and be inactivated by a 

cysteine-reactive lanthanide tag. To address these constraints, 

we made the D82C mutant of SrtA and synthesized the new 

paramagnetic tags T1 and T2 (Figure 3a; see the Supplementary 

Schemes S2-S5 for tag synthesis and ligation with SrtA). T1 

reacts with a solvent-exposed thiol group in aqueous solution at 

pH 7.6 with the release of phenylsulfonate as the leaving group 

and, owing to the bromine atom, is more reactive than the 

previously published 4PhSO2-PyMTA tag.27 T2 reacts with a 

protein thiol similar to 4,4-dithiobisdipicolinic acid with formation 

of a disulfide bond.28 Both tags showed high chemoselectivity 

towards the thiol group of the cysteine at position 82, but were not 

reactive towards the side chain of Cys184, as confirmed by 

chemical shift mapping and MALDI-TOF mass spectra (Figures 

S4 and S5). The tags have high affinities for lanthanide ions, 

which were not compromised by a large excess of Ca2+ (up to 20 

equivalents). 

To generate the paramagnetically tagged thioacyl 

intermediate, solutions of the SrtA D82C-T1/T2 adducts were 

first titrated with lanthanides ions in the presence of calcium, 

which maintained saturation of the calcium binding site with Ca2+ 

(Figures 3a and S6). Subsequent addition of QALPETG-NH2 

peptide generated the thioacyl intermediate. As expected, only 

two paramagnetic species were observed (Figures 4a and S6), 

where the major species corresponded to the free SrtA D82C-

T1/T2 complexes, while the minor species corresponded to the 

thioacyl intermediates (Figure 4b). PCSs were determined from 

the 1H chemical shift differences between the paramagnetic 

species, generated with Tm3+ or Tb3+ ions, and the diamagnetic 

species, using Y3+. Different PCSs were observed for the 

backbone amide protons of the thioacyl intermediate and of free 

SrtA (Figures 4a, 4b, S6, and S7).  

Using the program Numbat,29 the magnetic susceptibility 

anisotropy () tensors of the lanthanide complexes were 

determined using PCSs and the crystal structure of free SrtA 

(PDB code: 1T2P20), using only protein segments with regular 

secondary structure, for which neither chemical shifts nor PCSs 

changed significantly between free SrtA and the thioacyl 

intermediate. The resulting  tensor parameters are listed in 

Table S1. Similar  tensors were obtained by using the NMR 

structure of SrtA (PDB code: 1IJA19, Table S2). The  tensor 

parameters of the thioacyl intermediate were similar to that of free 

SrtA, suggesting that formation of the thioacyl intermediate 

causes no significant structural rearrangement for the structurally 

well-defined segments of the protein. T1 and T2 tags generated 

different paramagnetic tensors, providing complementary 

information for subsequent structure calculations. 

Next we determined the structure of the thioacyl intermediate 

from the PCSs. A total of 407 PCSs (262 PCSs for D82C-T1-

QALPET, 145 for D82C-T2-QALPET) collected for Tm3+ and Tb3+ 

ions were used to compute the structure of loop regions in the 

thioacyl intermediate using the program Xplor-NIH.30-32 The 

conformation of structurally conserved regions of the protein, as 

judged by conservation of chemical shifts and PCSs, was kept 

rigid by a set of backbone dihedral angle restraints derived from 

available structures of SrtA. Starting from the crystal structure of 

free SrtA (PDB code: 1T2P),20 a total of 1000 conformers were 

calculated (for details see the Supporting Information). Figure 5a 

presents the 20 lowest energy conformations out of 1000 

structures calculated for the thioacyl intermediate. The calculated 

structures converged well, with C and heavy atom rmsd values 

to the average structure of 0.7 and 1.1 Å, respectively. Starting 

the calculations from the NMR structure of the disulfide bond 
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linked thioacyl analogue, SrtA-LPAT* (PDB code: 2KID)21 yielded 

very similar conformations (Figures S8 and S9, and Tables S3 

and S4). Compared with the crystal structure of SrtA, the thioacyl 

intermediate revealed notable structural changes in several 

regions, including the 6/7 and 7/8 loops (Figure 5). The 

residues in these regions are important for catalytic function and 

were found to undergo conformational exchange in earlier NMR 

studies of free SrtA.20,21 In addition, residues in the first helix (α1) 

and the Ca2+ binding motif, including the loop segments 34, 

4α2, and 56, also showed significant structural changes. 

 

Figure 5. 3D structure of the thioacyl intermediate defined by PCSs. a) 

Superimposition of the 20 lowest energy structures of the thioacyl intermediate 

calculated using the PCSs. PCS isosurfaces of the thioacyl SrtA D82C-T1-Tb 

complex are shown together with the protein structure. The isosurfaces plotted 

correspond to PCSs of 0.8 and 0.2 ppm (blue) and -0.8 and -0.2 ppm (red). b) 

Backbone Cα displacement of the lowest-energy structure of the thioacyl 

intermediate relative to the crystal structure of free SrtA (black squares) (PDB 

code: 1T2P20) and to the first conformer of the NMR structure of the disulfide-

linked thioacyl analogue, SrtA-LPAT* (red spheres) (PDB code: 2KID21). c) 

Structure comparison between the thioacyl intermediate (gray) and SrtA-LPAT* 

(PDB code: 2KID21, blue). The side chains of residues 120, 184, and 197, which 

form a triangle marking the active site, and of Trp194 are shown as sticks. Loop 

regions with significant structural differences are labeled. d) Superimposition of 

sortase A structures of the thioacyl intermediate (gray), SrtA with inhibitor (PDB 

code: 2MLM33, red) 

 

The structure of the thioacyl intermediate most closely 

resembles the structure of the disulfide-bonded SrtA-LPAT* 

analogue (PDB code: 2KID,21 Figure 5b and c) and differs 

significantly from the crystal structure of SrtA with non-covalently 

bound LPETG peptide (PDB code: 1T2W),20 which has almost the 

same conformation as free SrtA. The 6/7 and 7/8 loops in the 

thioacyl intermediate also differ significantly from the structure 

determined of SrtA with an inhibitor linked to Cys184 via a 

disulfide bond (PDB code: 2MLM;33 Figure 5d). 

As in the SrtA-LPAT* analogue, Ca2+ restricts conformation 

exchange in the thioacyl intermediate, as evidenced by the 

appearance of 15N-HSQC cross-peaks for residues from the 6/7 

loop that are affected by chemical exchange broadening in free 

SrtA (Figure 1 and Figure S10).26 The altered conformation of the 

67 loop is interesting, because it forms a connection between 

the calcium binding site and Cys184 in the active site. In addition, 

the thioacyl intermediate also displays a more extended 

conformation of the β7/β8 loop, which facilitates the nucleophilic 

attack of the thioester by an oligo-glycine peptide in the next step 

of the catalytic cycle.21  

Despite overall structural similarity with the SrtA-LPAT* 

analogue, there are also significant differences in several 

segments of the protein (Figure 5 and Figure S9), which correlate 

with the chemical shift perturbations (Figure S5). Most strikingly, 

the 7/8 loop differs in the thioacyl intermediate (Figure 5b), 

including the side chains of Trp194 and His120 (Figure 5c). The 

side chain of Trp194, which resides in the 7/8 loop, shows a 

very clear difference in PCSs between free SrtA and the thioacyl 

intermediate (Figure 1a and b). This residue contributes to the 

enzyme function, as four-fold decreased enzymatic activity has 

been reported for the mutant W194A.34 The chemical difference 

between a disulfide bond and a thioester also seems to contribute 

to structural differences in the 4α2 loop (Figure 5c), which was 

proposed to be involved in the subsequent reaction with oligo-

glycine peptides.21 

The present work illustrates the power of PCSs for assessing 

3D structures of transient enzymatic intermediates present only 

as minor species in non-equilibrium solutions. To the best of our 

knowledge, the structure of the short-lived thioacyl intermediate 

of SrtA determined here with the help of PCSs presents the first 

structural view, in solution, of an enzymatic intermediate with 

limited lifetime. The structure determination was made possible 

by lanthanide tags of carefully tuned reactivity to tag SrtA at a 

solvent exposed cysteine residue without modifying Cys184 at the 

active site. We expect that this strategy will be very useful for the 

structure analysis of minor protein species that are sufficiently 

stable to be observable as a separate set of peaks, even if only 

transiently and with weak intensity. 
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3D structures of low-abundance transient enzyme intermediates can be determined by pseudocontact shifts measured by NMR 
spectroscopy. The method is demonstrated with the unstable thioacyl intermediate formed by Staphylococcus aureus sortase A and 
peptide substrate. 
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