2,895 research outputs found
Individualism-collectivism and interpersonal memory guidance of attention
Recently it has been shown that the allocation of attention by a participant in a visual search task can be affected by memory items that have to be maintained by a co-actor, when similar tasks are jointly engaged by dyads (He, Lever, & Humphreys, 2011). In the present study we examined the contribution of individualism-collectivism to this ‘interpersonal memory guidance’ effect. Actors performed visual search while a preview image was either held by the critical participant, held by a co-actor or was irrelevant to either participant. Attention during search was attracted to stimuli that matched the contents of the co-actor’s memory. This interpersonal effect correlated with the collectivism scores, and was enhanced by priming with a collectivistic scenario. The dimensions of individualism, however, did not contribute to performance. These data suggest that collectivism, but not individualism, modulates interpersonal influences on memory and attention in joint action
Internal Josephson-Like Tunneling in Two-Component Bose-Einstein Condensates Affected by Sign of the Atomic Interaction and External Trapping Potential
We study the Josephson-like tunneling in two-component Bose-Einstein
condensates coupled with microwave field in respond to various attractive and
repulsive atomic interaction under the various aspect ratio of trapping
potential and the gravitational field. It is very interesting to find that the
dynamic of Josephson-like tunneling can be controlled from fast damped
oscillations and asymmetric occupation to nondamped oscillation and symmetric
occupation.Comment: 4 pages, 5 figure
Influence of Doubled CO2 on Ozone via Changes in the Brewer–Dobson Circulation
In this short note, the effect of enhanced circulation due to doubling CO2 on ozone is investigated. The difference of Brewer–Dobson circulation (BDC) between the doubled CO2 and control run from an idealized atmospheric general circulation model is added to the BDC climatology derived from National Centers for Environmental Prediction—Department of Energy Reanalysis 2 (NCEP2) from 1979 to 2002. Then it is used to drive the California Institute of Technology/Jet Propulsion Laboratory (Caltech/JPL) two-dimensional chemistry and transport model. The results reveal that the total ozone increases by 7 and 3.5 Dobson units (DU) in the high latitudes of the Northern and Southern Hemispheres, respectively, and decreases by 4 DU in the Tropics as a result of the increase in BDC associated with doubled CO2. If the change of eddy mixing coefficients after doubling CO2 is also considered, the total ozone will increase by 6.5 and 3 DU in the high latitudes of the Northern and Southern Hemispheres after combining both effects from the change in BDC and eddy mixing coefficients
Improved IEEE 802.11 point coordination function considering fiber-delay difference in distributed antenna systems
In this paper, we present an improved IEEE 802.11 wireless local-area network (WLAN) medium access control (MAC) mechanism for simulcast radio-over-fiber-based distributed antenna systems where multiple remote antenna units (RAUs) are connected to one access point (AP). In the improved mechanism, the fiber delay between RAUs and central unit is taken into account in a modification to the conventional point coordination function (PCF) that achieves coordination by a centralized algorithm. Simulation results show that the improved PCF outperforms the distributed coordination function (DCF) in both the basic-access and request/clear-to-send modes in terms of the total throughput and the fairness among RAU
New interpretation of matter-antimatter asymmetry based on branes and possible observational consequences
Motivated by the AMS project, we assume that after the Big Bang or inflation
epoch, antimatter was repelled onto one brane which is separated from our brane
where all the observational matter resides. It is suggested that CP may be
spontaneously broken, the two branes would correspond to ground states for
matter and antimatter respectively. Generally a complex scalar field which is
responsible for the spontaneous CP violation, exists in the space between the
branes and causes a repulsive force against the gravitation. A possible
potential barrier prevents the mater(antimatter) particles to enter the space
between two branes. However, by the quantum tunnelling, a sizable anti-matter
flux may come to our brane. In this work by considering two possible models,
i.e. the naive flat space-time and Randall-Sundrum models and using the
observational data on the visible matter in our universe as inputs, we derive
the antimatter flux which would be observed by the AMS detector.Comment: 10 pages, 4 figures and 2 tables. Replaced by new versio
Progress in understanding of the molecular basis underlying functional diversification of cyclic di-nucleotide turnover proteins
Cyclic di-GMP was the first cyclic di-nucleotide second messenger described, presaging the discovery of additional cyclic di-nucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, to include both enzymatically active and inactive members with a subset involved in synthesis and degradation of other cyclic di-nucleotides. Here we summarize current knowledge of sequence and structural varitions that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL and HD-GYP domain proteins
- …