190 research outputs found

    Policy Experimentation as Communication with the Public:Social Policy, Shared Responsibility, and Regime Support in China

    Get PDF
    Traditional wisdom on policy experimentation has mainly focused on central-local relations. However, scholars have paid little attention to the interaction between policy experimentation and the public. We argue that policy experimentation can be adopted by decision makers as a communication instrument with the public, facilitating the building of a social consensus regarding controversial policies. We evaluate the effects of the Chinese government’s efforts in promoting shared responsibility between the state and the individuals for the urban pension system with policy experimentation on public’s regime support. Evidence from two rounds of a nationwide survey conducted before and after the policy experiment indicates that the implementation of policy experiment has significantly contributed to citizens’ acceptance of individual welfare responsibility. Moreover, the image building of governmental responsibility via official news with varied intensity across regions immediately consolidates the political trust of residents while posing threats to local government credibility in the long run

    A study of instability in a miniature flying-wing aircraft in high-speed taxi

    Get PDF
    AbstractThis study investigates an instability that was observed during high-speed taxi tests of an experimental flying-wing aircraft. In order to resolve the reason of instability and probable solution of it, the instability was reproduced in simulations. An analysis revealed the unique stability characteristics of this aircraft. This aircraft has a rigid connection between the nose wheel steering mechanism and an electric servo, which is different from aircraft with a conventional tricycle landing gear system. The analysis based on simulation results suggests that there are two reasons for the instability. The first reason is a reversal of the lateral velocity of the nose wheel. The second reason is that the moment about the center of gravity created by the lateral friction force from the nose wheel is larger than that from the lateral friction force from the main wheels. These problems were corrected by changing the ground pitch angle. Simulations show that reducing the ground pitch angle can eliminate the instability in high-speed taxi

    Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The three-dimensional shape of grain, measured as grain length, width, and thickness (GL, GW, and GT), is one of the most important components of grain appearance in rice. Determining the genetic basis of variations in grain shape could facilitate efficient improvements in grain appearance. In this study, an F<sub>7:8 </sub>recombinant inbred line population (RIL) derived from a cross between <it>indica </it>and <it>japonica </it>cultivars (Nanyangzhan and Chuan7) contrasting in grain size was used for quantitative trait locus (QTL) mapping. A genetic linkage map was constructed with 164 simple sequence repeat (SSR) markers. The major aim of this study was to detect a QTL for grain shape and to fine map a minor QTL, <it>qGL7</it>.</p> <p>Results</p> <p>Four QTLs for GL were detected on chromosomes 3 and 7, and 10 QTLs for GW and 9 QTLs for GT were identified on chromosomes 2, 3, 5, 7, 9 and 10, respectively. A total of 28 QTLs were identified, of which several are reported for the first time; four major QTLs and six minor QTLs for grain shape were also commonly detected in both years. The minor QTL, <it>qGL7</it>, exhibited pleiotropic effects on GL, GW, GT, 1000-grain weight (TGW), and spikelets per panicle (SPP) and was further validated in a near isogenic F<sub>2 </sub>population (NIL-F<sub>2</sub>). Finally, <it>qGL7 </it>was narrowed down to an interval between InDel marker RID711 and SSR marker RM6389, covering a 258-kb region in the Nipponbare genome, and cosegregated with InDel markers RID710 and RID76.</p> <p>Conclusion</p> <p>Materials with very different phenotypes were used to develop mapping populations to detect QTLs because of their complex genetic background. Progeny tests proved that the minor QTL, <it>qGL7</it>, could display a single mendelian characteristic. Therefore, we suggested that minor QTLs for traits with high heritability could be isolated using a map-based cloning strategy in a large NIL-F<sub>2 </sub>population. In addition, combinations of different QTLs produced diverse grain shapes, which provide the ability to breed more varieties of rice to satisfy consumer preferences.</p

    Online prediction of biomass moisture content in a fluidized bed dryer using electrostatic sensor arrays and the Random Forest method

    Get PDF
    The inherent moisture content in biomass needs to be dried before it is used for energy production. Fluidized bed dryers (FBD) are widely applied in drying biomass and the moisture content should be monitored continuously to maximise the efficiency of the drying process. In this paper, the moisture content of biomass in a FBD is predicted using electrostatic sensor arrays and a random forest (RF) based ensemble learning method. The features of electrostatic signals in the time and frequency domains, correlation velocity and the outlet temperature and humidity of exhaust air are chosen to be the input of the RF model. Model training is accomplished using the data taken from a lab-scale experimental platform and the hyper-parameters of the RF model are tuned based on the Bayesian optimization algorithm. Finally, comparisons between the online predicted and sampled values of biomass moisture content are conducted. The maximum relative error between the online predicted and reference values is less than 13%, indicating that the RF model provides a viable solution to the online monitoring of the fluidized bed drying process

    Outlook on ecologically improved composites for aviation interior and secondary structures

    Get PDF
    Today, mainly man-made materials such as carbon and glass fibres are used to produce composite parts in aviation. Renewable materials such as natural fibres or bio-sourced resin systems have not found their way into aviation, yet. The project ECO-COMPASS aims to evaluate the potential applications of ecologically improved composite materials in the aviation sector in an international collaboration of Chinese and European partners. Natural fibres such as flax and ramie will be used for different types of reinforcements and sandwich cores. Furthermore, the bio-based epoxy resins to substitute bisphenol-A based epoxy resins in secondary structures are under investigation. Adapted material protection technologies to reduce environmental influence and to improve fire resistance are needed to fulfil the demanding safety requirements in aviation. Modelling and simulation of chosen eco-composites aims for an optimized use of materials while a life cycle assessment aims to prove the ecological advantages compared to synthetic state-of-the-art materials. In this paper, the status of selected ecologically improved materials will be presented with an outlook for potential application in interior and secondary structures

    Voltage-Dependent Anion Channel 2 of Arabidopsis thaliana (AtVDAC2) Is Involved in ABA-Mediated Early Seedling Development

    Get PDF
    The voltage-dependent anion channel (VDAC) is the major transport protein in the outer membrane of mitochondria and plays crucial roles in energy metabolism, apoptosis, and metabolites transport. In plants, the expression of VDACs can be affected by different stresses, including drought, salinity and pathogen defense. In this study, we investigated the expression pattern of AtVDAC2 in A. thaliana and found ABA suppressed the accumulation of AtVDAC2 transcripts. Further, phenotype analysis of this VDAC deregulated-expression transgenic Arabidopsis plants indicated that AtVDAC2 anti-sense line showed an ABA-insensitivity phenotype during the early seedling development under ABA treatment. The results suggested that AtVDAC2 might be involved in ABA signaling in A. thaliana

    Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction

    Get PDF
    Electrochemical conversion of CO2 to formic acid using Bismuth catalysts is one the most promising pathways for industrialization. However, it is still difficult to achieve high formic acid production at wide voltage intervals and industrial current densities because the Bi catalysts are often poisoned by oxygenated species. Herein, we report a Bi3S2 nanowire-ascorbic acid hybrid catalyst that simultaneously improves formic acid selectivity, activity, and stability at high applied voltages. Specifically, a more than 95% faraday efficiency was achieved for the formate formation over a wide potential range above 1.0 V and at ampere-level current densities. The observed excellent catalytic performance was attributable to a unique reconstruction mechanism to form more defective sites while the ascorbic acid layer further stabilized the defective sites by trapping the poisoning hydroxyl groups. When used in an all-solid-state reactor system, the newly developed catalyst achieved efficient production of pure formic acid over 120 hours at 50 mA cm–2 (200 mA cell current)

    Measurement of moisture content in a fluidized bed dryer using an electrostatic sensor array

    Get PDF
    Fluidized bed dryers have been widely applied to dry raw materials or final products due to the advantages of good mixing efficiency and high heat and mass transfer rate. In order to control and optimize the drying process of fluidized bed dryers, it is necessary to develop reliable methods to measure the moisture content of solid particles in the bed. Because of the advantages of non-intrusiveness, simple structure and high sensitivity, an electrostatic sensor array has been developed to monitor the drying process. Experimental investigations were conducted on a lab-scale fluidized bed dryer. The moisture content during the drying process was measured using the sampled particles as reference. It is found that the fluctuation of the electrostatic signals can reflect the change in moisture content. However, the relationship between the fluctuation of the electrostatic signal and the moisture content depends on the air velocity in the dryer. To eliminate the velocity effect on moisture content measurement, a model between the moisture content and the root-mean-square magnitude of the electrostatic signal is established. The effectiveness of the model is validated using experimental results under a range of conditions. The findings indicate that the electrostatic sensor array can measure the moisture content in the bed with a maximum error of ±15%
    • …
    corecore