81 research outputs found

    Bird watching in China reveals bird distribution changes

    Get PDF
    This article describes the development of the China Bird Watching Database and its use to understand bird distribution changes

    Meta-analysis of the efficacy of Jingjin acupuncture therapy in the treatment of spastic cerebral palsy

    Get PDF
    BackgroundThis study aimed to systematically evaluate the clinical efficacy of Jingjin (muscle region of the meridian, sinew/tendon/fascia) acupuncture therapy for the treatment of spastic cerebral palsy.MethodsComputer searches of the Cochrane Library, Web of Science, PubMed, Embase, Chinese Biomedical Literature (CBM) Database, Wanfang database, Wipu (VIP) database, and China National Knowledge Infrastructure (CNKI) database for published randomized controlled trial (RCT) studies on Jingjin acupuncture treatment of cerebral palsy from the beginning of the database construction until 30 November 2023 were performed, and the quality of the papers was assessed through independent data extraction by two individuals and then meta-analyzed using RevMan5.4 software. A total of 20 RCTs involving 1,453 patients were included.ResultsThe overall effective rate of Jingjin acupuncture therapy was better than that of conventional therapy, with a combined odds ratio (OR) of 4.70 and a 95% confidence interval (CI) of [3.05, 7.24]. The Modified Ashworth Spasticity (MAS) Scale, Gross Motor Function Measure (GMFM), Fine Motor Function Measure (FMFM), and Comprehensive Spasticity Scale (CSS) scores are superior to conventional therapy.ConclusionJingjin acupuncture therapy is effective in treating spastic cerebral palsy and has better overall efficacy than conventional therapy. Due to the low quality of some of the literature in this study type, more high-quality, well-designed clinical studies are needed to validate it

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial

    Get PDF
    Background: Previous cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes. Methods: We conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment. Results: Forty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference − 0.40 [95% CI − 0.71 to − 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference − 1.6% [95% CI − 4.3% to 1.2%]; P = 0.42) between groups. Conclusions: In this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness. Trial registration: ISRCTN, ISRCTN12233792. Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial.

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial (vol 26, 46, 2022)

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Dynamic response of East Asian Greater White-fronted Geese to changes of environment during migration : Use of multi-temporal species distribution model

    No full text
    Understanding how migratory species select habitats is essential for applied ecology and biological conservation. Although migratory species move across a wide range of environments during migration, their dynamic response to environments has rarely been considered. Taking advantage of the fine spatial-temporal resolution of satellite tracking data, we studied habitat selection of East Asian greater white-fronted geese (Anser albifrons) along their spring migration route from Yangtze River Basin to Lena Delta and Yana Bay. We developed a novel methodology to improve dynamic species distribution models (SDMs) by incorporating environmental variables derived from remotely sensed data precisely corresponding to migration time. Our results demonstrate that distance to the nearest water body, elevation, human population density and temperature contribute greatly to the models. Water-related and topographic factors (e.g., elevation, slope and distance to the nearest water body) were consistently associated with habitat selection of the geese from wintering area to breeding area, while the varied influences of temperature and human population density in different migration periods are closely related to their adaptation to local environments. In addition, response curves of vegetation index indicate that the geese are more strongly associated with food quality than quantity in wintering area and stopover sites. By building SDMs in different periods, we provide a unique dynamic perspective on how a long-distance migrant responds to different environments. The methodology proposed here could be integrated to future conservation management plans for predicting species relationship with fast changing environmental conditions.</p

    Low-temperature resin embedding of the whole brain for various precise structures dissection

    No full text
    Summary: Resin embedding combined with ultra-thin sectioning has been widely used in microscopic and electron imaging to acquire precise structural information of biological tissues. However, the existing embedding method was detrimental to quenchable fluorescent signals of precise structures and pH-insensitive fluorescent dyes. Here, we developed a low-temperature chemical polymerization method named HM20-T to maintain weak signals of various precise structures and to decrease background fluorescence. The fluorescence preservation ratio of green fluorescent protein (GFP) tagged presynaptic elements and tdTomato labeled axons doubled. The HM20-T method was suitable for a variety of fluorescent dyes, such as DyLight 488 conjugated Lycopersicon esculentum lectin. Moreover, the brains also retained immunoreactivity after embedding. In summary, the HM20-T method was suitable for the characterization of multi-color labeled precise structures, which would contribute to the acquisition of complete morphology of various biological tissues and to the investigation of composition and circuit connection in the whole brain
    corecore