128 research outputs found
Automated Processing of ISIS Topside Ionograms into Electron Density Profiles
Modeling of the topside ionosphere has for the most part relied on just a few years of data from topside sounder satellites. The widely used Bent et al. (1972) model, for example, is based on only 50,000 Alouette 1 profiles. The International Reference Ionosphere (IRI) (Bilitza, 1990, 2001) uses an analytical description of the graphs and tables provided by Bent et al. (1972). The Alouette 1, 2 and ISIS 1, 2 topside sounder satellites of the sixties and seventies were ahead of their times in terms of the sheer volume of data obtained and in terms of the computer and software requirements for data analysis. As a result, only a small percentage of the collected topside ionograms was converted into electron density profiles. Recently, a NASA-funded data restoration project has undertaken and is continuing the process of digitizing the Alouette/ISIS ionograms from the analog 7-track tapes. Our project involves the automated processing of these digital ionograms into electron density profiles. The project accomplished a set of important goals that will have a major impact on understanding and modeling of the topside ionosphere: (1) The TOPside Ionogram Scaling and True height inversion (TOPIST) software was developed for the automated scaling and inversion of topside ionograms. (2) The TOPIST software was applied to the over 300,000 ISIS-2 topside ionograms that had been digitized in the fkamework of a separate AISRP project (PI: R.F. Benson). (3) The new TOPIST-produced database of global electron density profiles for the topside ionosphere were made publicly available through NASA s National Space Science Data Center (NSSDC) ftp archive at . (4) Earlier Alouette 1,2 and ISIS 1, 2 data sets of electron density profiles from manual scaling of selected sets of ionograms were converted fiom a highly-compressed binary format into a user-friendly ASCII format and made publicly available through nssdcftp.gsfc.nasa.gov. The new database for the topside ionosphere established as a result of this project, has stimulated a multitude of new studies directed towards a better description and prediction of the topside ionosphere. Marinov et al. (2004) developed a new model for the upper ion transition height (Oxygen to Hydrogen and Helium) and Bilitza (2004) deduced a correction term for the I N topside electron density model. Kutiev et al. (2005) used this data to develop a new model for the topside ionosphere scale height (TISH) as a function of month, local time, latitude, longitude and solar flux F10.7. Comparisons by Belehaki et al. (2005) show that TISH is in general agreement with scale heights deduced from ground ionosondes but the model predicts post-midnight and afternoon maxima whereas the ionosonde data show a noon maximum. Webb and Benson (2005) reported on their effort to deduce changes in the plasma temperature and ion composition from changes in the topside electron density profile as recorded by topside sounders. Limitations and possible improvements of the IRI topside model were discussed by Coisson et al. (2005) including also the possible use of the NeQuick model, Our project progressed in close collaboration and coordination with the GSFC team involved in the ISIS digitization effort. The digitization project was highly successful producing a large amount of digital topside ionograms. Several no-cost extensions of the TOPIST project were necessary to keep up with the pace and volume of the digitization effort
Monoclonal Antibodies against Accumulation-Associated Protein Affect EPS Biosynthesis and Enhance Bacterial Accumulation of Staphylococcus epidermidis
Because there is no effective antibiotic to eradicate Staphylococcus epidermidis biofilm infections that lead to the failure of medical device implantations, the development of anti-biofilm vaccines is necessary. Biofilm formation by S. epidermidis requires accumulation-associated protein (Aap) that contains sequence repeats known as G5 domains, which are responsible for the Zn2+-dependent dimerization of Aap to mediate intercellular adhesion. Antibodies against Aap have been reported to inhibit biofilm accumulation. In the present study, three monoclonal antibodies (MAbs) against the Aap C-terminal single B-repeat construct followed by the 79-aa half repeat (AapBrpt1.5) were generated. MAb18B6 inhibited biofilm formation by S. epidermidis RP62A to 60% of the maximum, while MAb25C11 and MAb20B9 enhanced biofilm accumulation. All three MAbs aggregated the planktonic bacteria to form visible cell clusters. Epitope mapping revealed that the epitope of MAb18B6, which recognizes an identical area within AapBrpt constructs from S. epidermidis RP62A, was not shared by MAb25C11 and MAb20B9. Furthermore, all three MAbs were found to affect both Aap expression and extracellular polymeric substance (EPS, including extracellular DNA and PIA) biosynthesis in S. epidermidis and enhance the cell accumulation. These findings contribute to a better understanding of staphylococcal biofilm formation and will help to develop epitope-peptide vaccines against staphylococcal infections
Floxuridine Amino Acid Ester Prodrugs: Enhancing Caco-2 Permeability and Resistance to Glycosidic Bond Metabolism
The aim of this study was to synthesize amino acid ester prodrugs of 5-fluoro-2′-deoxyuridine (floxuridine) to enhance intestinal absorption and resistance to glycosidic bond metabolism.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41510/1/11095_2005_Article_6156.pd
Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.
The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
How should urban water be priced? – An empirical analysis for the city of Mekelle, Ethiopia
Urban water utilities have focused on setting water prices to cover average costs, usually using increasing block rate designs. In an attempt to contribute to the use of efficient, equitable, and revenue-sufficient pricing, this paper estimates the long-run marginal and average social costs of water supply in Mekelle city using a multi-product translog cost function that incorporates the shadow price of natural water. Findings show that the marginal social costs of providing one m3 of residential and non-residential water are Birr 5.33 and 7.71 (Birr = Ethiopian currency: 1 Euro ≈ 23 Birr), respectively, while the average current prices are Birr 4.46 and 6.10/m3. On the other hand, the average social costs of residential and non-residential water are estimated at Birr 14.34 and 16.36/m3, respectively, implying that marginal social cost-based prices would still lead to a revenue deficit of approximately Birr 9/m3
New Vary-Chap Profile of the Topside Ionosphere Electron Density Distribution for use with the IRI Model and the GIRO Real-Time Data
A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S1(h) and S2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(sub T) indicating the transition from an O(+) to an H(+)-dominated profile shape. The observed transition heights range from approx.500 km to 800 km
- …