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Abstract

In this paper, we investigate an enhanced relay beamforming design for two-way relay networks (TWRN). In order to
reduce the computational complexity, we derive a sum of the inverse of the signal-to-noise ratio (SI-SNR) problem
equivalent to the objective sum-rate (SR) problem. The SI-SNR problem can be reformulated as a simple optimization
problem by using the Cholesky decomposition and Cauchy-Schwarz inequality, and solved by the interior-point
method. The numerical results show that the proposed SI-SNR method can not only reduce the computational
complexity but also have the same SR performance as that of the conventional works.

Keywords: Two-way relay channel, Sum-rate, Cholesky decomposition, Cauchy-Schwarz inequality,
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1 Introduction
Recently, the two-way relaying (TWR) has attracted sig-
nificant interests in improving the spectral efficiency
for wireless communication systems. Various cooperative
two-way relaying schemes have been proposed, such as
denoise-and-forward (DNF) [1, 2], compress-and-forward
(CF) [3], decode-and-forward (DF) [4, 5], amplify-and-
forward (AF) [1, 6, 7], and cooperative relaying protocols.
Because of a less processing power requirement and effi-
ciency, the AF scheme is the most widely used in the
two-way relay channel (TWRC).
Relay precoder design methods have been investigated

in [7–10]. In [7], the authors considered multi-user two-
way relay networks (TWRN) with distributed single-
antenna relays, where two approaches are considered, i.e.,
(1) null out all interference contributions at each user sep-
arately and (2) treat the interferences at each user as a
whole and null out the power of the total interferences.
In addition, a closed-form upper bound of the achiev-
able sum-rate (SR) is derived and the same multiplexing
gain is achieved when the number of relays is sufficiently
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large for the considered two approaches. For these
two approaches, in order to null every interference
(approach 1) and null the total interference (approach 2),
the conditionsN < 2K2+K andN ≥ 2K(K−1)+1 should
be satisfied, whereN is the number of relay nodes andK is
the number of the pairs of user nodes. In [8], the authors
propose an optimization problem for the TWR system by
using a signal-to-noise ratio (SNR) balancing result. In [9],
the optimal structure of the source and relay precoding
matrices for a two-way linear non-regenerative multiple-
input multiple-output (MIMO) relay system is studied. In
[10], the authors showed the global optimal solution can
be obtained by the branch-and-bound algorithm. Never-
theless, the computational complexity is extremely high
to find the orthogonal complement to solve the optimiza-
tion problem in the above existing works. In order to
reduce the computational complexity, [11–14] are inves-
tigated by using some effective ways. In [11], the authors
derived the achievable SR upper bound of AF beamform-
ing scheme and proposed the achievable SR maximizing
relay beamforming scheme when the destination and the
relay node have perfect knowledge of the channel state
information (CSI) for forward and backward channels. A
general power iterative algorithm is proposed which can
solve the global optimization problem with low compu-
tational complexity when the object function form is a
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product of fractional quadratic functions. In [12], a deter-
minant maximization problem of an AF based on the
TWR by using QL-QR decomposition is investigated. In
[13], the authors proposed a distributed TWR selection
scheme which possesses low implementation complex-
ity and the same diversity-multiplexing trade-off (DMT)
performance as that of the conventional work. In [14],
a channel norm (CN) scheduling scheme is proposed to
reduce the complexity and computational cost at the relay.
To further reduce the computational complexity, we

propose a novel and general distributed relay beamform-
ing scheme for the TWR. Since the channel state informa-
tion has to be exchanged between relays, the processing
usually changes on a slow timescale and needs not create
significant overhead. Therefore, following the distributed
manner, the weight matrix is diagonal which guarantees
that the relays transmit only their own received signal
and there is no data exchange among the relays. Since
the SR maximization problem is non-convex, we convert
the objective problem into a sum of the inverse of the
signal-to-noise ratio (SI-SNR) problem. By employing the
Cholesky decomposition and Cauchy-Schwarz inequality,
the SI-SNR problem can be approximately reformulated
as a convex optimization problem which can be solved by
using the interior-point method.
The rest of this paper is organized as follows. Section 2

describes a system model of the TWRC. In Section 3, we
propose an SI-SNR problem and derive the semi-closed-
form solution. The numerical results are presented to
show the excellent performance of our proposed method
for the TWRC in Section 4. Section 5 concludes this paper.
Notations:AT ,A−1,A†, and tr {A} denote the transpose,

the inverse, the pseudo-inverse and the trace of matrix A.

diag(·) denotes a diagonal matrix and an N × N iden-
tity matrix is denoted by IN . ‖·‖2, E(·), and � stand for
the Euclidean norm, the statistical expectation, and the
Hadamard product. 〈a, b〉 is the inner product of a and b.

2 Systemmodel
We consider a TWRC consisting of two source nodes S1
and S2 and N relay node RN as shown in Fig. 1. Each node
is equipped with a single antenna. We assume that the
channels are reciprocal, i.e., the source-to-relay channel
coefficients are the same as the relay-to-source channel
coefficients. Assume fi and gi denote the channel coeffi-
cients from source 1 and source 2 to relay node i, respec-
tively. Thus, for the total system, we have the channel vec-
tors f =[ f1, f2, ...fN ]T and g =[ g1, g2, . . . gN ]T . In the first
time slot, for the source node St , for t ∈ {1, 2}, the infor-
mation signal xt is transmitted to the relay nodes. In this
paper, we assume that each transmit antenna satisfies the
unity transmission power constraint, which is tr{xtxHt } = 1.
The received signals at relay nodes can be expressed as

kR = √
P1fx1 + √

P2gx2 + nR, (1)

where Pt denotes the transmit power, kR ∈ C
N×1 indi-

cates the received signal vector, and nR ∼ CN (0, IN )

represents the additive white Gaussian noise (AWGN)
vector with zero mean and the variance IN at relay nodes.
In the second time slot, the relay node Ri linearly ampli-

fies kR with anN ×N beamforming matrixW = diag(w),
wherew =[w1,w2, ...,wN ], and then broadcasts the ampli-
fied signal vector xR to source nodes 1 and 2. Since
the transmit power of souse node St is given as Pt , by
assuming nR with zero mean and the variance IN and the
transmitted signals x1 and x2 are independent, in order

Fig. 1 The two-way multi-relay network
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to normalize the relay transmit power, we propose the
following power normalization vector:

ρ = 1/
√
P1 + P2 + 1. (2)

The signal transmitted from relay node can be expressed
as

xR = ρWkR. (3)

As shown in [7], to guarantee that the relays transmit only
their own received signal and there is no data exchange
among the relays, the weight matrix is diagonal which fol-
lows the distributed manner. From (3), the total transmit
power used by the relay nodes can be expressed as

PR = E
{‖xR‖22

} = tr
{
ρ2WkRkHRWH}

= tr
{
wDwH}

, (4)

where D = ρ2 {
FFH + GGH + IN

}
with F = diag(f)

and G = diag(g). In TWRN, since the signal transmitted
by the transceiver nodes reappear as self-interference, by
employing the successive interference cancellation (SIC),
the self-interference can be completely eliminated with
perfect channel state information (CSI) [15]. Based on this
principle and assuming the CSIs are perfectly known at
each source node i, the self-interference components can
be efficiently canceled. After the self-interference cancel-
lation, the received signal vectors at S1 and S2 can be
written as

y1 = ρ
√
P2wFgx2 + ρwFnR + n1

y2 = ρ
√
P1wGfx1 + ρwGnR + n2, (5)

where nt is the noise vector at St with mean zero and
variance 1. From (5), the SNR at sources 1 and 2 can be
expressed as

SNR1 = ρ2P2whhHwH

ρ2wD1wH + 1
, (6)

and

SNR2 = ρ2P1whhHwH

ρ2wD2wH + 1
, (7)

where h = f � g, D1 = FFH , and D2 = GGH . In the next
section, we will propose an enhanced beamforming design
to efficiently obtain SR.

3 Enhanced beamforming design and sum-rate
maximization

The SR of the two source nodes in the proposed system
model can be written as:

Rsum = R1 + R2. (8)

Our goal is to find the relay amplification matrixWwhich
maximizes the sum-rate Rsum subject to a power con-
straint at the relay. Under the definition of the mutual
information, we have

Rt = 1
2
log2(1 + SNRt), (9)

where 1
2 is due to the half-duplex relay. Synthesizing

(8)–(9), the sum-rate can be expressed as

Rsum =1
2
log2

(
1 + ρ2P2whhHwH

ρ2wD1wH + 1

)

+1
2
log2

(
1 + ρ2P1whhHwH

ρ2wD2wH + 1

)
.

(10)

Therefore, the optimization problem of the sum-rate
respect to the total relay power constraint can be
formulated as:

Q1 : max
w

Rsum (11)

s.t. wDwH ≤ PR. (12)

Using log(a)+ log(b) = log(ab), the sum-rate Rsum can be
rewritten as

Rsum = 1
2
log2

{(
1 + ρ2P2whhHwH

ρ2wD1wH + 1

)

×
(
1 + ρ2P1whhHwH

ρ2wD2wH + 1

)}
.

(13)

Since the optimal solution of {max (1 + A)(1 + B)} is
equivalent to the problem

{
min

( 1
A + 1

B
)}

[16] and
1
2 log(x) is a monotonic function, consider the high trans-
mit SNR case, (11) can be approximately converted into

min
w

ρ2wD1wH + ρ2/αwD2wH + 1 + 1/α
ρ2P2whhHwH

(a)≈ min
w

ρ2wD1wH + ρ2/αwD2wH + 1 + 1/α
ρ2P2whhHwH + ρ2

(b)= min
w

wD1wH + 1/αwD2wH

P2whhHwH + 1︸ ︷︷ ︸
RA

+ (1 + 1/α) /ρ2

P2whhHwH + 1︸ ︷︷ ︸
RB

,

(14)

where α = P1
P2 and in (a), the addition “ρ2 = 1

P1+P2+1 "
in the denominator is extremely negligible compared to
the other term in the denominator. On the other hand,
the approximation (a) is completely necessary, which can
help us to obtain the semi-closed-form expression ofw. In
order to efficiently obtain the optimal solution, (14) can be
converted into parts RA and RB as shown in (b). Now, we
have the equivalent optimization problem Q2 as

Q2 : min
w

RA + RB (15)

s.t. wDwH ≤ PR. (16)

Proposition 1. The optimization problem Q2 is
equivalent to Q3 which is given as

Q3 : min
w

R̃A + R∗
B (17)

s.t. wDwH ≤ PR, (18)
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where R̃A = tr
{
�H

(
P2hhH + 1

ς
IN

)−1
�

}
with D1 +

1
α
D2 = ��H and R∗

B serve as the upper bounds of RA and
RB, respectively.

Proof Similar to [17], by introducing the auxiliary opti-
mization variables τA and τB, the optimization prob-
lem (15) can be recast in the epigraph form [18] as
{min (τA + τB)} , s.t. RA ≤ τA,RB ≤ τB. For the term
RA in the second equality of (14), since D1 and 1

α
D2

are hermitian and positive definite, by applying Cholesky
decomposition [19], we have

D1 + 1
α
D2 = ��H , (19)

where � denotes a lower triangular matrix. We can
rewrite RA as

RA = w
(
D1 + 1

α
D2

)
wH

w
(
P2hhH + 1

ς
IN

)
wH

(a)≤ tr
{

�H
(
P2hhH + 1

ς
IN

)−1
�

}

= R̃A, (20)

where ς = ‖w‖2 and (a) is due to the Cauchy-Schwarz
inequality ([20], Appendix A), i.e., |〈u, v〉|2 ≤ 〈u,u〉 · 〈v, v〉.
Interestingly, R̃A has nothing to relate to the minimum

solution of Rsum which serves as the upper bound of RA.
On the other hand, consider that the SNR at each relay is
identically distributed, the term of RB can be relaxed as

RB =
N∑

i=1

ς

P2h2i w
2
i + 1

, (21)

where ς = (1 + 1/α)ρ2 the ith diagonal element of
hhH is defined as h2i . From (21), the first-order and the
second-order derivatives of RB with respect to the relay
beamforming factor wi can be respectively derived as

∂RB
∂wi

= −
N∑

i=1

2ςP2h2i wi
(
P2h2i w

2
i + 1

)2 , (22)

and

∂2RB

∂w2
i

=
N∑

i=1

(
8ςP22h4i w2

i(
P2h2i w

2
i + 1

)3 − 2ςP2h2i(
P2h2i w

2
i + 1

)2

)

. (23)

From (23), it is easy to see that as long as −
√

1
3P2h2i

< wi <
√

1
3P2h2i

, for wi �= 0 (this case is out of the scope), it follows
∂2RB
∂w2

i
< 0; otherwise, ∂2RB

∂w2
i

> 0. Since ∂RB
∂wi

is a decreasing

function for −
√

1
3P2h2i

< wi <
√

1
3P2h2i

, meanwhile ∂RB
∂wi

is

a increasing function for wi < −
√

1
3P2h2i

and ∂RB
∂wi

< 0 for

wi >
√

1
3P2h2i

, there exists maximum R∗
B associated with

min |wi|, which can be efficiently solved by the interior-
point method [18]. By replacing R̃A = τA and R∗

B = τB, we
have the problem Q3. This completes the proof.

According to Proposition 1, the optimization problem
Q3 can be finally expressed as

Q4 : min
w

R∗
B (24)

s.t. wDwH ≤ PR. (25)

The Lagrangian function associated with problems (24)
and (25) is given by

Lv = tr(RB) + μtr
(
wDwH − PR

)
, (26)

where μ ≥ 0 is the Lagrange multiplier. Making the
derivative of Lv with respect to wH be zero, we have

∂LV
∂wH = −η

(
P2whhHwH + 1

)−2 whhH + μwD, (27)

where η = 2ςP2. When μ ≥ 0, since hH is nonsingular,
we can obtain

η
(
P2whhHwH + 1

)−2 wh = μwD
(
hH

)−1 . (28)

Multiplying both sides by w† ∈ C
N×1 and (h)−1, we have

ηh−1w† (
P2whhHwH + 1

)−2 wh = μh−1D
(
hH

)−1 .(29)

Using the fact that
(
IN + AAH)−1A = A

(
IM + AHA

)−1

(which follows from the matrix inversion lemma) for any
N × M matrix A, we can rewrite (29) as

η
(
P2hHwHwh + IN

)−2 = μh−1D
(
hH

)−1 . (30)

Solving (30) for w, we have

w =
√

1
P2

(√
η

μ

(
hH

)− 1
2 D−1h− 1

2 − (
hhH

)−1
) 1

2
. (31)

Synthesizing Proposition 1 and (31), when
ς = ‖w‖2 holds, the solutions of RA and RB are always

optimum. Finally, we have the solution as

L∗
v � tr

(̃
RA + R∗

B
) + μtr

(
wDwH − PR

)
. (32)

Now, we summarize the proposed beamforming method
in Algorithm 1.

Algorithm 1 The proposed beamforming method
1. Initialize: h, G, F;

2. Computew=
√

1
P2

(√
η
μ

(
hH

)− 1
2 D−1h− 1

2 −(
hhH

)−1
)1

2
;

3. Obtain ς = ‖w‖2 with fixed w;

4. Obtain R̃A = tr
{
�H

(
P2hhH + 1

ς
IN

)−1
�

}
with fixed

ς ;
5. Obtain R∗

B = (1+1/α)ρ2

P2whhHwH+1 with fixed w;
6. Obtain Rsum = R̃A + R∗

B.
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Comparing with the conventional algorithm in [10], the
proposed beamforming Algorithm 1 significantly reduces
the computational complexity. This is because, to obtain
the maximum solution of SR in [10], the iterative branch-
and-bound algorithm is used which is problematic in
practical systems. In contrast, in our proposed beamform-
ing Algorithm 1, the near (at least local) optimal solution
ofw can be obtained without iterations. In addition, in the
proposed beamformingmethod, we efficiently convert the
objective SR problem into a convex and low-computation-
cost one, i.e., max Rsum −→ min R∗

B.

4 Numerical results
In this section, we measure the performance of the pro-
posed Algorithm 1 in terms of sum-rate compared with
the branch-and-bound algorithm in [10]. In all simula-
tions, the channel estimates f and g are assumed to be
reciprocal and identically distributed complex Gaussian
random variables. We further assume that the noise vari-
ances of nR,nt for t = 1, 2, are equally given as σ 2 = 1.
In addition, the upper bound solution of SR is obtained by
using the exhaustive search algorithm. Comparisons are
made with the branch-and-bound algorithm [10] in two
different system setups: (1) N = 2 and (2) N = 3.
In Fig. 2, we compare the average SR performance for

the proposed method with the optimal and one-iteration
solutions of branch-and-bound method [10] versus trans-
mit SNR, i.e., P1 = P2, with RN = 2 and RN = 3
relay nodes. The optimal solution by using the exhaustive
search method serves as the upper bound. It is found that
the proposed method is closed to the optimum of [10]
and has a remarkable improvement than the one iteration
solution. This is because the Cauchy-Schwarz inequality is
employed to obtain R̃A in (20) which leads to the extreme
loss of the performance. In addition, the solution of our
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proposed method is closed to the one in [10] with increas-
ing transmit power. This is because the approximation of
(a) in (14) is negligible at high SNR.
Figure 3 exhibits the average SR performance for the

proposedmethodwith the optimal and one-iteration solu-
tions of branch-and-bound method [10] versus P2 with
fixed P1 = 5. It is clear from Fig. 3 that the solution of our
proposed method shows better performance than that of
the one iteration [10], and the advantage is increased with
greater number of relay N . In addition, it is easy to see
that the performances of our proposed scheme and the
optimal one in [10] are close at high SNR, which supports
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the practical utility of our design. In Fig. 4, we compare
the average SR performance for our proposed scheme by
using Algorithm 1 versus the number of relay node N
with the optimal one, where the cases P1 = P2 = 5 and
P1 = P2 = 10 are considered. Remarkably, the perfor-
mance gap between the proposed one and the optimal one
is smaller for the higher SNR case.

5 Conclusions
In this paper, we considered the TWRN with the
enhanced relay beamforming design and proposed a low
computational complexity method to solve the SR maxi-
mization problem. The objective problem was efficiently
converted into a SI-SNR problem which is a simple and
low-computation-cost one. Finally, the semi-closed-form
solution of SI-SNR problem is derived. Numerical results
showed that the performance of the proposed SI-SNR is
improved compared to the existing one.
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