18 research outputs found

    Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior

    Get PDF
    Surface acoustic wave (SAW) sensors have great advantages in real-time and in-situ gas detection due to their wireless and passive characteristics. Using nanostructured sensing materials to enhance the SAW sensor’s responses has become a research focus in recent years. In this paper, solution-processed PbS colloidal quantum dots (CQDs) were integrated into quartz SAW devices for enhancing the performance of NO2 detection operated at room temperature. The PbS CQDs were directly spin-coated onto ST-cut quartz SAW delay lines, followed by a ligand exchange treatment using Pb(NO3)2. Upon exposure to 10 ppm of NO2 gas, the sensor coated with untreated PbS CQDs showed response and recovery times of 487 s and 302 s, and a negative frequency shift of -2.2 kHz, mainly due to the mass loading effect caused by the absorption of NO2 gas on the surface of the dense CQD film. Whereas the Pb(NO3)2-treated sensor showed fast response and recovery times of 45 s and 58 s, and a large positive frequency shift of 9.8 kHz, which might be attributed to the trapping of NO2 molecules in the porous structure and thus making the film stiffer. Moreover, the Pb(NO3)2-treated sensor showed good stability and selectivity at room temperature

    Surface acoustic wave NO2 sensors utilizing colloidal SnS quantum dot thin films

    No full text
    Colloidal quantum dots (CQDs) have shown their advantages in gas-sensing applications due to their extremely small particle size and facile solution based processes. In this study, a high sensitivity of surface acoustic wave (SAW) NO2 sensor was demonstrated using SnS CQDs as the sensing layer. The delay line based SAW device with a resonant frequency of 200 MHz were fabricated on ST-cut quartz substrate. The SnS CQDs with average sizes of 5.0 nm were synthesized and deposited onto SAW sensors using a spin-coating method. The fabricated SAW sensor was capable of detecting a low concentration of NO2 gas at room temperature with a good efficiency and selectivity e.g., with a 1.8 kHz decrease of center frequency of the SAW delay line when exposed to 10 ppm NO2 at room temperature

    Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages

    No full text
    Acute schistosomiasis is characterized by pro-inflammatory responses against tissue- or organ-trapped parasite eggs along with granuloma formation. Here, we describe studies in Cx3cr1−/− mice and demonstrate the role of Cx3cr1 in the pathoetiology of granuloma formation during acute schistosomiasis. Mice deficient in Cx3cr1 were protected from granuloma formation and hepatic injury induced by Schistosoma japonicum eggs, as manifested by reduced body weight loss and attenuated hepatomegaly along with preserved liver function. Notably, S. japonicum infection induced high levels of hepatic Cx3cr1 expression, which was predominantly expressed by infiltrating macrophages. Loss of Cx3cr1 rendered macrophages preferentially towards M2 polarization, which then led to a characteristic switch of the host immune defense from a conventional Th1 to a typical Th2 response during acute schistosomiasis. This immune switch caused by Cx3cr1 deficiency was probably associated with enhanced STAT6/PPAR-γ signaling and increased expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that promotes M2 polarization of macrophages. Taken together, our data provide evidence suggesting that CX3CR1 could be a viable therapeutic target for treatment of acute schistosomiasis

    Validating ionospheric scintillation indices extracted from 30s-sampling-interval GNSS geodetic receivers with long-term ground and in-situ observations in high-latitude regions

    No full text
    As a frequently-occurred phenomenon in the high-latitude region, ionospheric scintillations affect the stable service of the positioning navigation and timing service of the Global Navigation Satellite System (GNSS), calling for an urgent need of monitoring the scintillations accurately. The monitoring of scintillations usually adopts a special type of receiver, called an ionospheric scintillation monitoring receiver (ISMR), which cannot cover the whole high-latitude region due to its loss distribution. Geodetic receivers are densely distributed, but set at a 30s-sampling-interval usually. It is a controversial issue, namely, the accuracy of the scintillation index extracted from 30s-sampling-interval observations. This paper evaluates the accuracy of two 30s-sampling-interval indices in monitoring scintillations from both the time and space aspects using observations collected in the whole year of 2020. The accuracy in the time aspect is assessed with the phase scintillation index from ISMR as the reference through the following three-pronged approaches, i.e., the accuracy of the daily scintillation occurrence rates in the year 2020, the correlation with space weather parameters, and the variation pattern of the scintillation occurrence rate with the local time and day of the year 2020. The accuracy in space is studied based on the scintillation grid model considering the following two aspects, i.e., the scintillation monitoring performance in a Swarm satellite observation arc, and the statistical scintillation occurrence rate in the whole research region throughout the year 2020. The results of this paper reveal the efficiency of the 30s-sampling-interval scintillation indices in monitoring scintillations and detecting the occurrence patterns in the high-latitude region. The outcome of this paper can provide a basic idea for introducing the widely distributed geodetic receivers to monitor and model the scintillations in the high-latitude region
    corecore