246 research outputs found

    SSBM: A Signed Stochastic Block Model for Multiple Structure Discovery in Large-Scale Exploratory Signed Networks

    Full text link
    Signed network structure discovery has received extensive attention and has become a research focus in the field of network science. However, most of the existing studies are focused on the networks with a single structure, e.g., community or bipartite, while ignoring multiple structures, e.g., the coexistence of community and bipartite structures. Furthermore, existing studies were faced with challenge regarding large-scale signed networks due to their high time complexity, especially when determining the number of clusters in the observed network without any prior knowledge. In view of this, we propose a mathematically principled method for signed network multiple structure discovery named the Signed Stochastic Block Model (SSBM). The SSBM can capture the multiple structures contained in signed networks, e.g., community, bipartite, and coexistence of them, by adopting a probabilistic model. Moreover, by integrating the minimum message length (MML) criterion and component-wise EM (CEM) algorithm, a scalable learning algorithm that has the ability of model selection is proposed to handle large-scale signed networks. By comparing state-of-the-art methods on synthetic and real-world signed networks, extensive experimental results demonstrate the effectiveness and efficiency of SSBM in discovering large-scale exploratory signed networks with multiple structures

    Flow induced dissolution of femtoliter surface droplet arrays

    Get PDF
    The dissolution of liquid nanodroplets is a crucial step in many applied processes, such as separation and dispersion in food industry, crystal formation of pharmaceutical products, concentrating and analysis in medical diagnosis, and drug delivery in aerosols. In this work, using both experiments and numerical simulations, we \textit{quantitatively} study the dissolution dynamics of femtoliter surface droplets in a highly ordered array under a uniform flow. Our results show that the dissolution of femoliter droplets strongly depends on their spatial positions relative to the flow direction, drop-to-drop spacing in the array, and the imposed flow rate. In some particular case, the droplet at the edge of the array can dissolve about 30% faster than the ones located near the centre. The dissolution rate of the droplet increases by 60% as the inter-droplet spacing is increased from 2.5 μ\mum to 20 μ\mum. Moreover, the droplets close to the front of flow commence to shrink earlier than those droplets in the center of the array. The average dissolution rate is faster for faster flow. As a result, the dissolution time TiT_{i} decreases with the Reynolds number Re of the flow as TiRe3/4T_{i}\propto Re^{-3/4}. The experimental results are in good agreement with numerical simulations where the advection-diffusion equation for the concentration field is solved and the concentration gradient on the surface of the drop is computed. The findings suggest potential approaches to manipulate nanodroplet sizes in droplet arrays simply by dissolution controlled by an external flow. The obtained droplets with varying curvatures may serve as templates for generating multifocal microlens in one array

    Sulfotanshinone Sodium Injection for Unstable Angina Pectoris: A Systematic Review of Randomized Controlled Trials

    Get PDF
    Objective. To assess the effect of sulfotanshinone sodium injection for unstable angina. Methods. We searched for published and unpublished studies up to June 2011. We included randomized controlled trials that confoundedly addressed the effect of sulfotanshinone sodium injection in the treatment of unstable angina. Results. Twenty-five studies involving 2,377 people were included. There was no evidence that sulfotanshinone sodium alone had better or worse effects to routine western medicine treatments in improving clinical symptoms (RR 1.00, 95% CI 0.90 to 1.11) and ECG (RR 0.97, 95% CI 0.87 to 1.09). However, there was evidence that sulfotanshinone sodium combined with western medications was a better treatment option than western medications alone in improving clinical symptoms (RR 1.28, 95% CI 1.23 to 1.3), ECG (RR 1.26, 95% CI 1.18 to 1.35), C-reaction protein (mean difference 2.10, 95% CI 1.63 to 2.58), and IL-6 (mean difference −3.85, 95% CI −4.10 to −3.60). There was no difference between sulfotanshinone sodium plus western medications and western medications alone affecting mortality (RR 0.50, 95% CI 0.02 to 12.13). Conclusion. Compared with western medications alone, sulfotanshinone sodium combined with western medications may provide more benefits for patients with unstable angina. Further large-scale high-quality trials are warranted

    Oiling-out Crystallization of Beta-Alanine onSolid Surfaces Controlled by Solvent Exchange

    Full text link
    Droplet formation in oiling-out crystallization has important implication for separation and purification of pharmaceutical active ingredients by using an antisolvent. In this work, we report the crystallization processes of oiling-out droplets on surfaces during solvent exchange. Our model ternary solution is beta-alanine dissolved in isopropanol and water mixture. As the antisolvent isopropanol displaced the alanine solution pre-filled in a microchamber, liquid-liquid phase separation occurred at the mixing front. The alanine-rich subphase formed surface microdroplets that subsequently crystallized with progression of solvent exchange. We find that the flow rates have significant influence on the droplet size, crystallization process, and growth rate, and final morphology of the crystals. At fast flow rates the droplets solidified rapidly and formed spherical-cap structures resembling the shape of droplets, in contrast to crystal microdomains or thin films formed at slow flow rates. On a highly hydrophilic surface, the crystals formed thin film without droplets formed on the surface. We further demonstrated that by the solvent exchange crystals can be formed by using a stock solution with a very low concentration of the precursor, and the as-prepared crystals can be used as seeds to trigger crystallization in bulk solution. Our results suggest that the solvent exchange has the potential to be an effective approach for controlling oiling-out crystallization, which can be applied in wide areas, such as separation and purification of many food, medical, and therapeutic ingredients.Comment: Advanced Materials Interfaces (2020

    Identification of the chemical components of ethanol extract of Chenopodium ambrosioides and evaluation of their in vitro antioxidant and anti tumor activities

    Get PDF
    Purpose: To determine the characteristic chemical components of the ethanol extract of Chenopodium ambrosioides and evaluate their antioxidant and anti-tumor effects in vitro. Methods: The plant powder (5 g) was extracted with 1 L of 80 % ethanol at room temperature for 45 min, and then placed at 60 oC at varying microwave power and duration to obtain optimal extraction conditions. Characteristic chemical components were detected using ultra-high performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS). Kaempferitrin was isolated from the 80 % ethanol extract using a D101 macroporous resin column, and its content was assessed by high performance liquid chromatography (HPLC). The antioxidant effect of kaempferitrin was evaluated by its ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) radicals, while its anti-proliferation activity in human liver cancer cells SMMC-7721 was determined using cell counting kit-8 (CCK-8) reagent. Results: Three characteristic components of ethanol extract of C. ambrosioides were obtained, namely, kaempferitrin, kaempferol-3-O-apigenin-7-O-rhamnoside and kaempferol-3-O-acetylapigenin-7-O-rhamnoside. Kaempferitrin was shown to possess strong DPPH radical and moderate ABTS radical scavenging activities. Kaempferitrin significantly inhibited the proliferation of SMMC-7721 cells at doses of 4 and 8 μg/mL, with half-maximal concentration (IC50) of 0.38 μM (p < 0.05). Conclusion: Kaempferitrin extracted from C. ambrosioides has antioxidant and anti-tumor activities. The results reported here indicate that C. ambrosioides may have potential use in herbal medicine practice

    Habitat Use and Activity Patterns of Mammals and Birds in Relation to Temperature and Vegetation Cover in the Alpine Ecosystem of Southwestern China with Camera-Trapping Monitoring

    Get PDF
    The high-altitude ecosystem of the Tibetan Plateau in China is a biodiversity hotspot that provides unique habitats for endemic and relict species along an altitudinal gradient at the eastern edge. Acquiring biodiversity information in this area, where the average altitude is over 4000 m, has been difficult but has been aided by recent developments in non-invasive technology, including infrared-triggered camera trapping. We used camera trapping to acquire a substantial number of photographic wildlife records in Wolong National Nature Reserve, Sichuan, China, from 2013 to 2016. We collected information of the habitat surrounding the observation sites, resulting in a dataset covering 37 species and 12 environmental factors. We performed a multivariate statistical analysis to discern the dominant environmental factors and cluster the mammals and birds of the ecosystem in order to examine environmental factors contributing to the species’ relative abundance. Species were generalized into three main types, i.e., cold-resistant, phyllophilic, and thermophilic, according to the identified key environmental drivers (i.e., temperature and vegetation) for their abundances. The mammal species with the highest relative abundance were bharal (Pseudois nayaur), Moupin pika (Ochotona thibetana), and Himalayan marmot (Marmota himalayana). The bird species with highest relative abundance were snow partridge (Lerwa lerwa), plain mountain finch (Leucosticte nemoricola), Chinese monal (Lophophorus lhuysii), and alpine accentor (Prunella collaris)
    corecore